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Statistical mechanics of cracks: Fluctuations, breakdown, and asymptotics of elastic theory

Alex Buchel and James P. Sethna
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

~Received 2 October 1996; revised manuscript received 31 January 1997!

We study a class of models for brittle fracture: elastic theory models that allow for cracks but not for plastic
flow. We show that these models exhibit, at all finite temperatures, a transition to fracture under applied load
similar to the first-order liquid-gas transition. We study this transition at low temperature for small tension.
Using the complex variable method in a two-dimensional elastic theory, we prove that the energy release in an
isotropically stretched material due to the creation of an arbitrary curvy cut is the same to cubic order as the
energy release for the straight cut with the same end points. We find the energy spectrum for crack shape
fluctuations and for crack surface phonons, under a uniform isotropic tension. For small uniform isotropic
tension in two dimensions, we calculate the essential singularity associated with fracturing the material in a
saddle point approximation including quadratic fluctuations. This singularity determines the lifetime of the
material~half-life for fracture!, and also determines the asymptotic divergence of the high-order corrections to
the zero temperature elastic coefficients. We calculate the asymptotic ratio of the high-order elastic coefficients
of the inverse bulk modulus, and argue that the result is unchanged by nonlinearities—the ratio of the high-
order nonlinear terms are determined solely by the linear theory.@S1063-651X~97!02706-2#

PACS number~s!: 03.40.Dz, 46.30.Nz, 62.20.Dc, 62.20.Mk
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I. INTRODUCTION

Early in the theory of fracture, Griffith@1# used Inglis’
stress analysis@2# of an elliptical flaw in a linear elastic
material to predict the critical stress under which a cra
irreversibly grows, causing the material to fracture. Co
versely, for a stressed solid the Griffith criterion determin
the crack nucleation barrier: if the material has microcra
due to disorder or~less commonly! thermal fluctuations, how
long does a microcrack have to be to cause failure und
given load? In a sense, a solid under stretching is similar
supercooled gas: the point of zero external stress plays
role of the liquid-gas condensation point. Fisher’s@3# theory
of the condensation point predicts that the free energy of
system develops an essential singularity at the transi
point. In this paper we develop a framework for the fie
theoretical calculations of the thermodynamics of linear e
tic theory with cracks~voids! that naturally incorporates th
quadratic fluctuations, and we calculate the analog of F
er’s essential singularity. Following Langer@4#, the imagi-
nary part of the essential singularity can be used to determ
the lifetime to fracture. This is similar to a resonance pro
lem in quantum mechanics, where the imaginary part of
energy determines the decay rate of the resonance.

There is much work on thermal fluctuations leading
failure at rather high tensions, near the threshold for insta
ity ~the spinodal point! @5#; there is also work on the role o
disorder in nucleating cracks at low tensions@6#. We are
primarily interested in the thermal statistical mechanics
cracks undersmall tension. We must admit and emphasi
that, practically speaking, there are no thermal crack fluc
tions under small tension—our calculations are of no pra
cal significance. Why are we studying thermal cracks in t
formal limit? First, for sufficiently small tension, the bulk o
the material~excluding regions near the crack tips! obeys
linear elastic theory, thus making analytical analysis of
fracture thermodynamics tractable. Second, thereal part of
551063-651X/97/55~6!/7669~22!/$10.00
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our essential singularity implies that nonlinear elastic the
is not convergent. Just as in quantum electrodynamics@7#
and other field theories@8#, for all finite temperatures, non
linear elastic theory is an asymptotic expansion, with z
radius of convergence at zero pressure. We will calculate
high-order terms in the perturbation expansion governing
response of a system to infinitesimal tension. We find it
triguing that Hooke’s law is actually a first term in a dive
gent asymptotic series.

The paper is organized as follows. In Sec. II, using t
complex variable method in a two-dimensional elas
theory, we calculate the energy release due to the equ
rium opening of an arbitrary curvy crack to quadratic ord
in kink angles. In Sec. III we find the spectrum of the boun
ary fluctuations~surface phonons! of a straight cut under
uniform isotropic tension at infinity. Section IV is devoted
the calculation of the imaginary part of the free energy. T
calculation of the contribution of thermal fluctuations d
pends on the ‘‘molecular structure’’ of our material at sho
length scales — in field theory language, it isregularization-
dependent. We calculate the imaginary part of the free e
ergy both for thez function and a particular lattice regula
ization, and determine the temperature-depend
renormalization of the surface tension. Earlier we showed@9#
that the thermal instability of an elastic material with resp
to fracture results in a nonanalytical behavior of the elas
constants~e.g., the bulk modulus! at zero applied stress. In
Sec. V we extend the calculation@9# of the high-order ex-
pansion of the inverse bulk modulus by including quadra
fluctuations. We show there that the asymptotic ratio of
high-order elastic coefficients, written in terms of the ren
malized surface tension, isindependentof regularization~for
the cases we studied!, and we argue also that they are ind
pendent of nonlinear effects near the crack tips.~The
asymptoticnonlinearcoefficients depend only on thelinear
elastic moduli.! In Sec. VI we perform the simplified calcu
lation ~without fluctuations! in several more general con
7669 © 1997 The American Physical Society
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7670 55ALEX BUCHEL AND JAMES P. SETHNA
texts: anisotropic strain~nonlinear Young’s modulus!, cluster
nucleation and dislocation nucleation, and three-dimensio
brittle fracture. We also discuss the effects of vap
pressure—nonperturbative effects when bits detach from
crack. Finally, we summarize our results in Sec. VII.

II. ENERGY RELEASE OF ‘‘SLIGHTLY’’ CURVY CUTS

Elastic materials under a stretching load can relieve
formation energy through the formation of cracks and voi
The famous Griffith criteria@1# for crack propagation is
based on the balance between the strain energy release
the increase in the material surface energy due to exten
the crack: only long cracks release enough strain energ
pay for the new surfaces. In the course of thermal fluct
tions a crack can originate from the successive breaking
atomic bonds. The line of the broken bonds need not
straight, and thus the contribution of curvy cuts must be
cluded in the material free energy. As we explain in Sec.
we have to know only the energy release due to theequilib-
rium opening of a curvy cut; moreover, for the quadra
analysis of the essential singularity of the free energy i
sufficient to consider only a small~quadratic! deviation of
the broken bonds from the straight line configuration. In t
section we calculate the energy release due to the equ
rium opening of a ‘‘slightly’’ curvy cut in a two-
dimensional, isotropic, linear elastic infinite medium subj
to a uniform isotropic tensionT at infinity.

Perturbation methods based on the Muskhelishvili’s@10#
methods for the straight cut have been used previously
the determination of the stress intensity factors of ‘‘slightly
curvy or kinked cracks@11,12#. A particularly elegant ap-
proach was developed by Cotterell and Rice@12#. They cal-
culated the stress intensity factors of a slightly curvy cra
subject to a generic opening traction at the surface to the
order in the deviation of the cut from the straight line. Th
result, when applied in the case of a uniform isotropic te
sion at infinity predicts that the energy release of a curvy
coincides with the energy release of the straight cut~with the
same endpoints! to the first order in the deviation.~This also
follows from the symmetry arguments that we present la
in the section.! In this section we will use their techniques
obtain a stronger result: the energy release of a curvy
opened by a uniform isotropic tension at infinity coincides
cubic order with the energy release of the straight cut w
the same end points.

An elastic state is completely defined once displaceme
(u,v) are known everywhere, where the deformed posit
of a point (x,y) is $x1u(x,y),y1v(x,y)%. Rather than con-
sidering these two functions, Muskhelishvili@10# introduces
two complex functionsf(z) and c(z) that in equilibrium
should be the functions of only one complex variablez ~i.e.,
they do not dependz̄). Moreover, in our case~a uniform
isotropic tension at infinity!, f(z) decomposes as

f~z!5 1
2Tz1f0~z!. ~1!

The functionsf0(z) andc(z) are holomorphic in the com
plex z plane including infinity but excluding the cut contou
This description associates the components of st
(sxx ,syy ,sxy) and displacement (u,v) to (f,c) by the fol-
lowing relations:
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sxx1syy52„f8~z!1f8~z!…,

syy2sxx12isxy52„z̄f9~z!1c8~x!…, ~2!

2m~u1 iv !5xf~z!2zf8~z!2c~z!.

@The detailed discussion of the change of ‘‘variable
(u,v)→(f,c) along with the derivation of Eqs.~1! and ~2!
can be found in@10#.# The change of variable is especial
convenient for the investigation of the crack energetics.
the new variables the energy release due to the equilibr
opening of the cut is given by@13#

Erelease52
pT

4m
~11x!Re@y1#, ~3!

with y1 being the residue ofc(z) at infinity. The material
elastic constantsm and x can be expressed through i
Young’s modulusY and Poisson ratios as follows:

m5
Y

2~11s!
,

~4!

x5
32s

11s
.

~The given value forx corresponds to a plain stress in
three-dimensional elastic theory; for a plain strain one sho
usex5324s.!

Before proceeding with the actual calculation of the e
ergy release, we briefly discuss the standard lore concer
the determination of the energy release for the infinite-s
system. The proper determination is extremely important
a correct description of the essential singularity in the f
energy, which arises only in the thermodynamic limit@14#.
For a finite-size system the energy release is a well-defi
quantity that depends on the shape of the material bound
The situation becomes more subtle in case of an infinite e
tic medium. In principle one can calculate the energy rele
analyzing stress fields near the crack tips, and thus avoid
necessity of worrying about infinite-sized medium. Th
method, developed by Irwin in the 1950s, is known as
stress intensity approach@15#. Alternatively, the energy re-
lease can be calculated considering the system as a who
this approach, to compute the energy release one ha
evaluate the work done by external forces and the chang
the energy of elastic deformation. The change in the ene
of the elastic deformation involves the difference betwe
two infinitely large quantities for an infinite material; th
latter thus requires some sort of infinite-volume limit. E
tending Bueckner’s analyses@16#, Rice@17# showed that two
methods give identical results if one carefully accounts
the boundary relaxation before taking the infinite-size lim
He presented the expression for the energy release in te
of stresses and strains local to the crack. The latter does
‘‘feel’’ the shape of the boundary in the infinite-volum
limit. In fact, expression~3! strongly relies on this conclu
sion.

To illustrate the correspondence between the energy
lease of a curvy cut and the straight one with the same
points, let us consider a rare example where it is possibl
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55 7671STATISTICAL MECHANICS OF CRACKS: . . .
find an exact analytical solution. Suppose a material wit
‘‘smile’’ cut—an arc of a circleABC—of total arc length
l ~Fig. 1! is subject to a uniform isotropic stretchingT at
infinity. Expanding the exact answer in@10# aboutz5`, we
find

cABC~z!52
Tl 2

8z

8 sin2u/2

u2~32cosu!
1OS 1z2D , ~5!

which, according to Eq.~3!, gives the energy releaseEABC

EABC5
pT2l 2

32m
~11x!

8 sin2u/2

u2~32cosu!
. ~6!

On the other hand, for a straight cutAC of length
(l /u)sinu, the holomorphic functioncAC(z) has an
asymptotic behavior@10#

cAC~z!52
Tl 2

8z

sin2u

u2
1OS 1z2D ~7!

resulting in the energy releaseEAC ,

EAC5
pT2l 2

32m
~11x!

sin2u

u2
. ~8!

For smallu we find, from Eqs.~6! and ~8!, the advertised
result: the energy release ofABC coincides with that of
AC to cubic order inu, but not to quartic order,

EABC5
pT2l 2

32m
~11x!S 12

u2

3
1
77u4

720
1O~u6! D ,

~9!

EAC5
pT2l 2

32m
~11x!S 12

u2

3
1
2u4

45
1O~u6! D .

We now proceed with the general proof. First, an arbitr
cut is approximated by a finite number of line segmen
parametrized by kink anglesa i—the angles between con
secutive kinks. The exact shape of the cut is then restore
the length of each link goes to zero~as their number goes t
infinity!. The energy release is evaluated to cubic order in

FIG. 1. The ‘‘smile’’-like cut ABC and the straight cutAC
result in the same energy release to cubic order inu.
a

y
,

as

e

kink angles, e.g., for then-kink regularization, the energy
releaseEn($a i%) for a curvy cut with a fixed separationl p
between the end points is approximated as

En~$a i%!5E~0!1(
i51

n

Ei
~1!a i1(

i51

n

(
j51

n

Ei j
~2!a ia j

1(
i51

n

(
j51

n

(
m51

n

Ei jm
~3! a ia jam1O~a i

4!, ~10!

whereE0 is the energy release for a straight cut of leng
l p and the coefficientsEi

(1) , Ei j
(2), andEi jm

(3) depend only on
the positions of the kinks along the cut. We claim that
coefficients up to cubic order are zero, and thus the energ
a curvy cut and the straight one with the same end points
differ only atO(a i

4).
That Ei

(1) and Ei jm
(3) ~in fact, all terms odd in the kink

angles! are zero follows from a symmetry argument: cu
~having the same number of segments with the correspo
ing segments being of the same length! with kink angles
$a i% and $2a i%, respectively, are mirror images of eac
other with respect to the first link. The boundary conditi
for our problem~a uniform tension at infinity! is reflection
invariant, so

En~$a i%!5En~$2a i%!, ~11!

which requires that all energy release terms odd in the k
angles vanish. To calculateEi j

(2) for a given pair of indexes,
we can put all kink angles to zero except fora i and a j ,
reducing then-kink problem to a two-kink one. From now
on we will consider only the two-kink problem to quadrat
order in the kink angles.

We choose the coordinate systemXY in the complexz
plane in such a way that the ends of the two-kink cut are
the X axis, symmetric with respect to theY axis ~Fig. 2!.
Assuming a uniform isotropic tensionT at infinity we rewrite
Eq. ~3!, explicitly indicating the dependence of the ener
release on the kink angles,

E2~a1 ,a2!52
pT

4m
~11x!Re@y1~a1 ,a2!#, ~12!

FIG. 2. The two-kink cutABCD can be considered as adefor-
mationof a straight cutAD.
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7672 55ALEX BUCHEL AND JAMES P. SETHNA
wherey1(a1 ,a2) is 1/z coefficient in the expansion of th
functionc(z) at infinity. As discussed earlier in the sectio
c(z) is a holomorphic function in the complexz plane in-
cluding infinity ~the extended complex plane! but excluding
the two-kink cut. The other functionf(z) that is necessary
for the specification of the equilibrium elastic state satisfi
Eq. ~1!, with f0(z) holomorphic in the same region a
c(z). The analytical functionsf(z) andc(z) must provide a
stress-free cut boundary, which, following@10#, can be ex-
pressed as

i f ~f,c!5@f~z!1zf8~z!1c~z!#uW
X 50, ~13!

where f5Fx1 iF y is the complex analog of the force actin
on the portion of the cut boundary between pointsW and
X.

It is important to note that any two pairs of function
„f0

1(z),c1(z)… and „f0
2(z),c2(z)… that are holomorphic in

the extendedz plane excluding the same curvy cut, an
which provide the stress-free cut boundaries toO(a3), Eq.
~13!, can differ only byO(a3) everywhere:

df~z!5f0
1~z!2f0

2~z!5O~a3!,
~14!

dc~z!5c1~z!2c2~z!5O~a3!.

This follows explicitly from Cauchy’s theorem, but also fo
lows from the elastic theory. Each pair„f0

1(z)
1Tz/2,c1(z)… or „f0

2(z)1Tz/2,c2(z)… defines the equilib-
rium elastic state with stresses of orderO(a3) along the cut
boundary and uniform isotropic stretchingT at infinity. So,
„df(z),dc(z)… corresponds to the equilibrium state with th
specified stresses of orderO(a3) along the cut boundary an
zero tension at infinity. Thus Eq.~14! follows, because the
response to this force within linear elastic theory must
linear. The above argument guarantees that once we
f0(z) and c(z) that satisfy the discussed constraints
O(a3), we can use them to calculate the energy releas
the curvy cut to quadratic order.

Let functionsfs(z) andcs(z) define the equilibrium elas
tic state of a material with a straight cutAD subject to a
uniform tension T at infinity. f0

s(z)5fs(z)2Tz/2 and
cs(z) should then be holomorphic in the extended comp
z plane excluding the straight cut, and should provide stre
free boundaries alongAD. Muskhelishvili finds@10#

dfs~z!

dz
5
T

2

z

Az22l p
2/4

,

~15!

dcs~z!

dz
5
T

8

zl p
2

~z22l p
2/4!Az22l p

2/4
.

@To obtainfs(z) andcs(z), we integrate Eq.~15!; the arbi-
trariness in the integration constants reflect the ambiguit
the displacements up to a rigid motion of the material a
whole.# Note thatf0

s(z) andcs(z) can be ‘‘made’’ holomor-
phic everywhere in the complexz plane excluding the two-
kink cut ABCD, and thus can serve as a good starting po
for the construction off0(z) andc(z). The process of an
analytical continuation is demonstrated by Fig. 3.f0

s(z) @or
equivalentlycs(z)# is holomorphic in thez plane excluding
s

e
nd

of

x
s-

in
a

t

the straight cut AD, Eq. ~4a!. Removing the region
ABCDA, Eq. ~4b!, we make it holomorphic in the comple
plane excludingABCDA. Now we analytically continue
f0
s(z) from the linkAD, Eq. ~4c!, into the removed region

@the continuation is possible explicitly using Eq.~15!#. The
obtained function becomes holomorphic everywhere in
complex z plane excluding the two-kink cutABCD, Eq.
~4d!, moreover the original function and the one obtain
through the analytical continuation coincide outsi
ABCDA.

The idea of constructing the holomorphic functio
f0(z) and c(z) is simple: we start with the function
f0
s(z) andcs(z) and calculate to quadratic order the stres

along the two-kink cut boundaryABCD under the analytical
continuation as described by Fig. 3. The stresses along
curvy cut boundary~Fig. 4! are then compensated for up
quadratic order in the kink angles by introducing coun
forces along the original~straight! cut, leading to corrected
functions dfc(z) and dcc(z), where f(z)5fs(z)
1dfc(z)1O(a3) and c(z)5cs(z)1dcc(z)1O(a3). For
the calculation of the energy release~12!, we need the rea
part of the residue ofc(z) at infinity: we will show that the
residue ofdcc(z) at infinity is zero and thus the residues
c(z) andcs(z) at z5` are the same—which means that t
energy release for the curvy cutABCD is the same as tha
for the straight cutAD.

FIG. 3. Functionsf0
s(z) andcs(z) holomorphic in the complex

z plane excluding the straight cutAD ~a!, can be ‘‘made’’ holomor-
phic in the complexz plane excluding the two-kink cutABCD ~d!.

FIG. 4. The stress free boundary of a two-kinkABCD cut ~b!
can be mimicked by applying the tangential force to the previou
unstressed~a! straight cut boundaryAD.
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55 7673STATISTICAL MECHANICS OF CRACKS: . . .
Let us assume that pointsW and X are on the upper
boundary of the link AB. From Fig. 2, z5t
1ib(t1l p/2)1O(a3), where tPAB8 and b5(12k1)a1
1(12k2)a21O(a3). Using Eq.~13!, we find

i f ~f0
s ,cs!5@fs~ t !11tfs~ t !811cs~ t !1#uW

X 1 ib~ t1l p/2!

3~fs~ t !811fs~ t !812tfs~ t !912cs~ t !81!uW
X

2
b2~ t1l p/2!2

2
~fs~ t !911tfs~ t !-1

22fs~ t !911cs~ t !91!uW
X 1O~a3!

52b2~ t1l p/2!2fs~ t !91uW
X 1O~a3!, ~16!

where t runs alongAB8; the 1 superscript means that th
values of f0

s(t) and c(t) should be taken at the uppe
boundary of the straight cut. To obtain the second expres
in Eq. ~16!, one can plug in the explicit form~15!, or—more
elegantly—note that fortPAB8, fs(t) is pure imaginary and
cs(z)852zfs(z)9. Either way, it follows that the functions
dfc(z) anddcc(z) satisfy

id f5@dfc~ t !11tdfc~ t !811dcc~ t !1#uW
X

522b2~ t1l p/2!2fs~ t !91uW
X . ~17!

This is the force we need to add along the straight cut
below segmentAB to cancel the stress along the curvy c
Similar expressions can be found for the forces needed
low BC andCD. To find dfc(z) and dcc(z) we have to
solve the elasticity problem for the material with the straig
cut AD, subject to these applied forcesid f along the cut
boundary. Fortunately, this problem allows a closed anal
cal solution @10#. Expanding the exact expression f
dcc(z) in @10#, we find

dcc~z!5
l p

4p iz R
g
Re@ id f „x~s!…#ds1OS 1z2D , ~18!

where the integration is along the unit circleg in the com-
plex plane, andid f is a function of a variable poin
x(s)5l p(s11/s)/4 along the straight cut boundaryAD.
Notice from Eq.~17! that id f is pure imaginary evaluated o
the upper boundary of the linkAB: in this caseutu,l p/2,
and so the argument of the square root in Eq.~15! is nega-
tive, resulting in pure imaginaryfs(t)8, thusfs(t)9 is also
pure imaginary. In fact, as it can be checked explicit
Re@ id f #50 for arbitraryW andX along the cut boundary
So we conclude from Eq.~18! that the residue ofdcc(z) at
infinity is zero, and thus the energy release for the curvy
ABCD is the same as for the straight cutAD. The underly-
ing physical reason for this seemingly remarkable coin
dence is that to imitate the stress free curvy cut to quadr
order in the kink angles we have to apply only tangen
force along the straight cut~pure imaginary id f means
Fy50), which does not work because a straight cut unde
uniform isotropic tension at infinity opens up but does n
shrink @10#.

We find that the energy releaseE(l p) of the curvy cut
with projected distancel p between the end points is th
on

st
.
e-

t

i-

,

t

i-
ic
l

a
t

same to quadratic order in the kink angles as the ene
release of the straight cut of lengthl p . The latter one is
given by the second formula in Eq.~9! with u50 ~it also
coincides with Griffith’s result!,

E~ l p!5
pT2l p

2

32m
~11x!. ~19!

The natural variables to describe the curvy cut are its to
length l and its curvaturek(x), xP@0,l #. In what follows
we express Eq.~19! in these variables, and find the norm
modes of the curvature that diagonalize the energy relea

For the two-kink cutABCD ~Fig. 2! of total lengthl ,
one can find

l p5l S 12
x1~ l 2x1!

2l 2 a1
22

x1~ l 2x2!

l 2 a1a2

2
x2~ l 2x2!

2l 2 a2
2D1O~a3!, ~20!

wherex1 andx2 parametrize the kink positions: the length
the link AB is assumed to bex1 and the length of the seg
mentABC equalsx2. Similarly, for then-kink cut of total
length l with the kink angles$a i% parametrized by their
distance$xi% from the cut end,

l p5l S 12 1
2 (
i , j51

n

a ia jF2
xixj
l 2 1

min~xi ,xj !

l G D 1O~a3!.

~21!

Expressing the kink angles through the local curvature of
curve,a i5k(xi)Dxi /l, we find the continuous limit of Eq
~21!,

l p5l S 12 1
2 E

0

l E
0

l dxdy

l2 k~x!M ~x,y!k~y! D 1O„k~x!3…,

~22!

with

M ~x,y!52
xy

l 2 1
min~x,y!

l
, ~23!

and the scalel is introduced to make the curvature dime
sionless (l can be associated with the ultraviolet cutoff
the theory—roughly the interatomic distance!. Substituting
Eq. ~23! into Eq. ~19!, we find the energy releas
E„l ,k(x)…5E(l p) of the curvy cut in its intrinsic variables

E„l ,k~x!…5
pT2l 2

32m
~11x!

3S 12E
0

l E
0

l dxdy

l2 k~x!M ~x,y!k~y! D
1O„k~x!3…. ~24!

To find the normal modes of the curvature we have to fi
the eigenvalues and eigenvectors of the operatorM (x,y). If
kn(x) is an eigenvector ofM (x,y) with eigenvalueln , then
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lnkn~x!5E
0

l dy

l
M ~x,y!kn~y!. ~25!

From Eq. ~23!, M (0,y)50 and M (l ,y)50 for arbitrary
yP@0,l #, so from Eq.~25! the eigenvectors ofM (x,y) must
be zero atx50 andx5l : kn(0)5kn(l )50. An arbitrary
function kn(x) with this property is given by the Fourie
series

kn~x!5 (
m51

`

cmS 2l

l
D 1/2sinpmx

l
, ~26!

where the overall constantA2l/l is introduced to normalize
the Fourier modes with the integration measuredx/l over
xP@0,l #. One can explicitly check from Eq.~25! that each
Fourier modeA2l/l sin(pmx/l ) is in fact an eigenvector o
M (x,y) with the eigenvaluelm5l /(p2m2l). In terms of
the amplitudes of the normal modes$cn%, Eq. ~24! is rewrit-
ten as

E~ l ,$cn%!5
pT2l 2

32m
~11x!S 12 (

n51

`
l

p2n2l
cn
2D 1O~cn

3!.

~27!

Equation~27! is the main result of the section: we have c
culated the energy release of an arbitrary curvy cut in
intrinsic variables—the total lengthl and the curvature
k(x), xP@0,l #—to quadratic order ink(x), and found the
normal modes of the curvature that diagonalize the ene
release.

Finally, we mention that the measure in the kink ang
space is Cartesian—) ida i—@and thus the functional mea
sureDk(x)[Da(x) is Cartesian#, so the measure in the vec
tor space of the amplitudes of the normal modes$cn% is also
Cartesian—)n51

` dcn , because the Fourier transformatio
$k(x)%→$cn% is orthonormal. This will be important in Sec
IV, where we will be integrating over crack shapes.

III. SURFACE PHONONS

In the previous sections we extensively discussed the
culation of the energy release due to the equilibrium open
of a cut in an elastic material. Since our goal is to deal w
cracks as thermal fluctuations, we must also deal with
more traditional elastic fluctuations—phonons or sound.
find here that the bulk fluctuations decouple from the n
surface phonon modes introduced by the cut. We discuss
quadratic fluctuations for linear elastic material with
straight cut of lengthl subject to a uniform isotropic tensio
T at infinity; more specifically, we calculate the energy r
lease for the material with an arbitrary opening of the strai
cut, and we find collective coordinates that diagonalize
change in the energy.

An elastic state of the fluctuating material can be defin
through the specification of its displacementsUW 5(u,v) at
every point (x,y). For the material with a cut, the field
u(x,y) and v(x,y) can in principle have a discontinuit
along the cut: assuming that the cut is an inter
(x,y)5(@2l /2,l /2#,0),
s

y

l-
g
h
e
e

he

-
t
e

d

l

2gx~x!5u~x,01 !2u~x,02 ! for xP@2l /2,l /2#
~28!

and

2gy~x!5v~x,01 !2v~x,02 ! for xP@2l /2,l /2#
~29!

may be nonzero. It is clear that the arbitrary stateUW can be
decomposed into a superposition of two sta
UW g5(ug ,vg) andUW c5(uc ,vc): UW g is the equilibrium elastic
state that maximizes the energy release for given displa
ment discontinuity (gx ,gy) at the cut boundaries~28! and
~29! and tension T at infinity, and UW c is given by
(uc ,vc)5(u2ug ,v2vg), and is a continuous displaceme
field everywhere. The stateUW describing the actual fluctua
tion of the elastic material should provide zero traction at
cut boundaries. This is not, however, a requirement for sta
UW g and UW c separately. In fact, for the stateUW g to be an
equilibrium one one needs to apply forces along the
boundaries to insure the displacement discontinu
(gx ,gy). For any physical fluctuationUW ~satisfying the
traction-free boundary condition at the cut!, the correspond-
ing continuous stateUW c will also have forces at the seam
where the cut is stitched together: these forces from ab
and below are equal and opposite at each point of
~former! cut.

The energy release is the sum of the work done by
external forces and the work done by the internal forces.
define the energy releaseE for the elastic stateUW with re-
spect to the equilibrium state of the materialUW 05(u0 ,v0)
without the cut under the same loading at infinity, as a lim
of this difference for finite size samples with boundaryGb
and enclosed areaA. We find

E5 R
Gb

TnW •~UW 2UW 0!dl 1 1
2 E E

A
~s i j

0ei j
02s i j ei j !dA,

~30!

wheres i j
0 andei j

0 are the stresses and strains of the equi

rium elastic state of the uncracked materialUW 0; s i j andei j
are the stresses and strains of the elastic state of mat
with the straight cut and displacement fieldUW ; andnW is a unit
normal pointing outwards from the regularization bounda
Gb . The first integral in Eq.~30! describes the work of the
external traction and the second one accounts for the cha
in the elastic deformation energy. We rewrite the energy
lease~30! making use of the decompositionUW 5UW g1UW c to
obtain

E5 R
Gb

TnW •~UW g2UW 0!dl 1 1
2 E E

A
~s i j

0ei j
02s i j

g ei j
g !dA

2 1
2 E E

A
s i j
c ei j

c dA1 R
Gb

TnW •UW cdl

2 1
2 E E

A
~s i j

g ei j
c 1s i j

c ei j
q !dA. ~31!
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The first two integrals in Eq.~31! give the energy release fo
the elastic stateUW g. According to our decomposition thi
energy release is maximum for givengx(x) andgy(x), and
thus can not increase linearly by tuningUW c . The latter is true
only if the last two integrals on the right-hand side
Eq. ~31!—linear inUW c—cancel each other. This decouplin
can be verified explicitly: integrating by parts and using t
fact thatUW g is an equilibrium state, we find

R
Gb

TnW •UW cdl 2 1
2 E E

A
~s i j

g ei j
c 1s i j

c ei j
q !dA52 1

2 R
Gh

FW h•UW c

~32!

where the integration on the right-hand side of Eq.~32! is
over the cut contour. The forceFW h applied at the cut bound
ary of the stateUW g must be antisymmetric~to have an anti-
symmetric displacement discontinuity!, while by definition,
the displacements at the cut for the stateUW c are symmetric.
The latter means that the right-hand side of Eq.~32! vanishes
identically. From Eqs.~31! and ~32!,

E5 R
Gb

TnW •(UW g2UW 0)dl

1 1
2 E E

A
~s i j

0ei j
02s i j

g ei j
g !dA

2 1
2 E E

A
s i j
c ei j

c dA, ~33!

the energy factors, and the last term representing the con
ous degrees of freedom, do not ‘‘feel’’ the presence of
cut and thus will have exactly the same spectrum as tha
the uncracked material.

This decoupling is more subtle than we are pretend
here, and depends upon how one describes the contin
medium on a microscopic scale—the regularization. We w
discuss this in Sec. IV, where we will show that decoupli
is perfect in the ‘‘split atom’’ lattice regularization.

From Clapeyron’s theorem@18#, the elastic energy of the
uncracked material is given by

1
2 E E

A
s i j
0ei j

0dA5 1
2 R

Gb

TnW •UW 0dl . ~34!

The elastic energy of the material with the cut is determin
by

1
2 E E

A
s i j
g ei j

g dA5 1
2 R

Gb

TnW •UW gdl 1 1
2 R

Gh

FW h•UW gdl . ~35!

Following Eqs.~33!–~35!, we find the energy releaseEg ,

Eg5
1
2 R

Gb

TnW •~UW g2UW 0!dl 2dE, ~36!

where

dE5 1
2 R

Gh

FW h•UW gdl . ~37!
u-
e
of

g
us
ll

d

In the spirit of Sec. II, the equilibrium elastic stateUW g can
be described by the analytical functionsf(z) and c(z);
f0(z)5f(z)2Tz/2 and c(z) are holomorphic in the ex-
tended complexz plane excluding the straight cut, and a
constrained to provide the displacement discontinu
(gx ,gy). In @13# the integral in Eq.~36! has been identified in
Muskhelishvili’s variables with Eq.~3!. The energy release
Eg is then smaller than the one given by Eq.~3! by dE,

Eg52
pT

4m
~11x!Re@y1

g#2dE, ~38!

wherey1
g is the 1/z coefficient in the expansion ofc(z) at

infinity.
To determine the functionsf0(z) and c(z) we confor-

mally map the complexz plane with the cut to the outside o
the unit circleg ~Fig. 5!,

z5v~z!5
l

4 S z1
1

z D , ~39!

so that the unit circle in thez plane is mapped to the straigh
cut boundaryGh in the original plane,Gh5v(g).

The elasticity problem is reformulated in the conform
plane as follows: we have to find analytical functio
fg(z)5f„v(z)… and cg(z)5c„v(z)…, such that
fg0(z)5fg(z)2l z/4 andcg(z) are holomorphic in the ex-
tended complexz plane outside the unit circle and give th
maximum energy release with displacement discontinu
(gx ,gy) at the cut boundary. We introduce

g~s!5ug1 ivgug , ~40!

wheres5exp(ia), aP@0,2p), is a parametrization of the
unit circle g. Since s and 1/s represent opposite point
across the cut, Eqs.~28! and ~29! require

g~s!2g~1/s!52@gx„v~s!…1 igy„v~s!…#,

aP@0,p!. ~41!

It is important to note that the equilibrium elastic state th
maximizes the energy release for given displacement disc
tinuity (gx ,gy) is unique; on the other hand, Eq.~41! deter-
mines only the asymmetric modesgasym(s) of the crack
opening displacement for this state,

2gasym~s!5@ug~s!1 ivg~s!#2@ug~1/s!1 ivg~1/s!#

52@gx„v~s!…1 igy„v~s!…#. ~42!

FIG. 5. The determination of the holomorphic functions descr
ing the equilibrium elastic state of the material with a straight cu
simplified in the conformal planez, where the unit circleg corre-
sponds to cut boundaryGh in the originalz plane.
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The symmetric modesgsym(s)

2gsym~s!5@ug~s!1 ivg~s!#1@ug~1/s!1 ivg~1/s!#, ~43!

left unconstrained by Eq.~41!, should then be relaxed t
provide the maximum energy release for givengasym(s).
Thus, to calculate the energy releaseEg of the elastic state
UW g we first find the energy releaseE(g)5E(gasym1gsym)
for the equilibrium state with an arbitrary displacement alo
the cut boundaryg(s), and then maximize the result wit
respect togsym

Eg5max
gsym

E~gasym1gsym!. ~44!

In what follows we will usefz(z) andcz(z) to describe the
equilibrium elastic state with an arbitrary displaceme
g(s) along the cut boundary and tensionT at infinity. @The
energy release for arbitraryg(s) is still given by Eqs.~37!
and ~38!.# Making the change of variablesz→w(z) in Eq.
~2! and puttingz5s, we obtain a constraint onfz(z) and
cz(z) that guarantees the displacements alongg to be
g(s),

xfz~s!2
v~s!

v8~s!
fz8~s!2cz~s!52mg~s!. ~45!

Once the solution (fz ,cz) of the elasticity problem is found
we can compute correction~37! to the energy release. Intro
ducing the polar coordinates (r,u) ~Fig. 5! in the complex
z plane, FW h5FrrW 1FuuW and UW g5vrrW 1vuuW , and, using
dl 5uv8(s)uudsu, we find

dE5 1
2 R

g
~Frvr1Fuvu!uv8~s!uudsu,

~46!

5 1
2 R

g
~srrvr1sruvu!uv8~s!uudsu,

where in the second equality we express the force thro
the stress tensor components:Fr5srr and Fu5sru . The
stress tensor componentssrr andsru are given in terms of
the fz(z) and cz(z) functions that, as we already men
tioned, completely determine the equilibrium elastic sta
Muskhelishvili finds@10#

srr2 isru5
fz8~z!

v8~z!
1

fz8~z!

v8~z!
2

z2

r2v8~z!H v~z!

v8~z!
fz9~z!

2
v~z!v9~z!

v8~z!2
fz8~z!1cz8~z!J . ~47!

Noting that the transformation of the displacements along
unit circle in the Cartesian coordinates (ug ,vg),
g5ug1 ivg , to the polar coordinates (vr ,vu), is @10#

vr1 ivu5
1

s

v8~s!

uv8~s!u ~ug1 ivg!5
1

s

v8~s!

uv8~s!u
g~s!, ~48!

we conclude, from Eq.~46!, that
g

t

h

.

e

dE5 1
2Re R

g
~srr2 isru!~vr1 ivu!uv8~s!uudsu

5 1
2Re R

g
~srr2 isru!

v8~s!

s
g~s!

ds

is
, ~49!

wheresrr2 isru is given by Eq.~47! with z→s (r→1).
From Eqs.~38! and ~49! we find the energy releaseE(g),

E~g!52
pT

4m
~11x!Re@y1~g!#

2 1
2Re R

g
~srr2 isru!

v8~s!

s
g~s!

ds

is
, ~50!

where y1(g) is the 1/z coefficient in the expansion o
cz„v

21(z)… at z5`.
The equilibrium elastic problem for material with th

straight cut allows a closed analytical solution for the ar
trary specified displacementg(s) along the unit circle in the
conformal planez. Using the fact thatfz0

(z) andcz(z) are
holomorphic functions outside the unit circle that satisfy E
~45!, Muskhelishvili finds@10#

fz~z!5
Tl z

8
2
2m

x

1

2p i Rg

g~s!ds

s2z
1

Tl

8xz
,

cz~z!5
m

p i Rg

g~s!ds

s2z
1
Tl

8 S x

z
2

2z

z221D ~51!

2z
11z2

z221S fz8~z!2
Tl

8 D2
m

p i Rg

g~s!ds

s
.

Assuming thatg(s) is smooth, we represent it by a conve
gent Fourier series

g~s!5(
2`

1`

~an1 ibn!s
n. ~52!

Using representation~52! for g(s) we find, from Eq.~50!,
the energy releaseE,

E~g!5
pTl ~11x!

4x
~a211xa1!22pm (

n51

1`

nS an21bn
2

1
a2n
2 1b2n

2

x D 2
pT2l 2~11x!

128m S x221
1

x D . ~53!

The computations are tedious, but straightforward: first
substitute Eq.~52! into Eq. ~51! to find the solution of the
elasticity problem in terms of the Fourier amplitud
$an ,bn%, then we calculate the stress tensor component
the unit circle using Eq.~47!, and, finally, plugging the resul
into Eq.~50! we obtain Eq.~53!. The next step is to relax the
symmetric modes in the crack opening displacement gi
by g(s). From Eqs.~52! and ~40! we find
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ug5 (
n51

1`

~an1a2n!cosna1~b2n2bn!sinna,

~54!

vg5 (
n51

1`

~bn1b2n!cosna1~an2a2n!sinna,

which, with the change of variables

un5b2n2bn,

vn5an2a2n ,
~55!

ũn5bn1b2n ,

ṽn5an1a2n ,

is rewritten as

ug5 (
n51

1`

ṽncosna1unsinna,

~56!

vg5 (
n51

1`

ũncosna1vnsinna.

It is clear now that the asymmetric modes of the crack op
ing displacement are described by$un ,vn%, while the sym-
metric ones are specified by$ũn ,ṽn%. @Recall that points pa-
rametrized bys and 1/s ~or equivalentlya and2a) are
opposite from one another across the cut.# The amplitudes
$un ,vn% are uniquely determined for the given (gx ,gy).
From Eqs.~42! and ~56!,

gx~ l cosa/2!1 igy~ l cosa/2!5 (
n51

`

~un1 ivn!sinna,

~57!

where aP@0,p#. Using the transformation inverse to E
~55!, we can express the energy release~53! in terms of
$un ,vn ,ũn ,ṽn%. The obtained expression is maximum for

ũn5un
x21

11x
,

ṽn5vn
12x

11x
, nÞ1, ~58!

ṽ15v1
12x

11x
1
Tl ~x21!

8m
,

and gives the energy releaseEg ,

Eg5
Tl p

2
v12

2pm

x11(n51

1`

n~un
21vn

2!. ~59!

Finally, the maximum of Eq.~59! is achieved for
-

un
max50, ~60!

vn
max50, nÞ1,

v1
max5

pTl ~11x!

8m

and

Eg
max5

pT2l 2~11x!

32m
, ~61!

which, as one might expect, corresponds to the equilibri
opening of the cut@10# and the energy release associat
with this opening, Eq.~19!. Expanding Eq.~59! about
$un

max,vn
max%, $un ,vn%→$un

max1un ,vn
max1vn%, we find

Eg5
pT2l 2~11x!

32m
2
2pm

11x (
n51

1`

n~un
21vn

2!. ~62!

Expression~62! is the desired result: we find that the cra
opening displacements~specified on the unit circle in the
conformal plane!

$u,v%5H vn12x

11x
cosna

1unsinna,un
x21

11x
cosna

1vnsinnaJ ~63!

imposed on the saddle point cut opening

$umax,vmax%5H 0,pTl ~11x!

8m
sinaJ ~64!

diagonalize the energy release, and thus are the no
modes; with the excitation of thenth normal mode with the
amplitude $un ,vn% the energy release decreases
2pmn(un

21vn
2)/(11x).

Although Eq.~59! has been derived for the material und
uniform isotropic stretching at infinity, it can be reinterpret
to describe the minimum increase in the energyDE of the
material under a uniform isotropic compression~pressure!
P at infinity, due to the opening of the straight cut with
specified displacement discontinuity along its boundary.
the displacement discontinuity given by Eq.~57!, we find,
similar to Eq.~59!,

DE5
Pl p

2
v11

2pm

x11 (
n51

1`

n~un
21vn

2!. ~65!

One can use the same arguments that lead to Eq.~33! to
show that the crack opening normal modes~63! decouple
from all continuous modes~that are present in the uncracke
material! and thus leave their spectrum unchanged. T
saddle point is, however, unphysical in this case: as follo
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from Eq.~64! @T in Eq. ~64! should be replaced with2P#, it
corresponds to a configuration where the material over
itself.

IV. IMAGINARY PART OF THE PARTITION FUNCTION

Elastic materials at finite temperature undergo a ph
transition to fracture at zero applied stress, similar to
first-order phase transition in spin systems below the crit
temperature at zero magnetic field. The free energy of
elastic material under a stretching load develops an im
nary part which determines the material lifetime with resp
to fracture. The imaginary part of the free energy has
essential singularity at zero applied stress. In this section
calculate this singularity at low temperatures in a sad
point approximation, including quadratic fluctuations.

Consider an infinite two-dimensional elastic material su
ject to a uniform isotropic stretchingT at infinity. Creation of
a straight cut of lengthl will increase the energy by 2al ,
wherea is the surface tension~the energy per unit length o
edge!, with a factor of 2 because of the two free surfaces.
the other hand, the cut will open up because of elastic re
ation. Using Eq.~61! for the energy release, we find the tot
energyE(l ) of the straight cut in equilibrium under stretch
ing tensionT,

E~ l !52al 2
pT2l 2~11x!

32m
. ~66!

Introducing

l c5
32ma

pT2~11x!
, ~67!

we can rewrite the energy of the crack as

E~ l !52al 2a
l 2

l c
. ~68!

It follows that cracks withl .l c will grow, giving rise to
the fracture of the material, while those withl ,l c will
heal—a result first obtained by Griffith@1#. At finite tem-
perature a crack of any size can appear as a thermal fluc
tion, which means that for arbitrary small stretchingT the
true ground state of the system is fractured into pieces,
so the free energy of the material cannot be analytica
T50. Because the energyE(l c)5al c grows as 1/T2 as
T→0, interactions between thermally nucleated cracks
unimportant at smallT and low temperatures~allowing us to
use the ‘‘dilute gas approximation’’!.

The thermodynamic properties of a macroscopic sys
can be obtained from its partition functionZ,

Z5 (
N50

`

(
n

exp~2bEnN!, ~69!

where the summationN is over all possible numbers of pa
ticles ~cracks in our case!, and the summationn is over all
states of the system withN cracks.

To begin with, let us consider the partition function of th
material with one cutZ1,
s

e
e
l
n
i-
t
n
e
e

-

n
x-

a-

nd
at

re

m

Z15(
E

exp~2bE!, ~70!

where the summation is over all energy states of the mate
with a single cut. The calculation of the imaginary part of t
partition function is dominated by a saddle point, that in o
case is a straight cut of lengthl c . The straight cut is the
saddle point, because it gains the most elastic relaxation
ergy for a given number of broken bonds~we explicitly show
in Sec. II that curving a cut reduces the energy release!. For
now we neglect all fluctuations of the critical droplet~the cut
of length l c) except for its uniform contraction o
expansion—fluctuations in the length of the straight cut.
troducing the deviationDl in the cut length from the critica
length l c , Dl 5l 2l c , we find, from Eq.~68!,

E5al c2a
Dl 2

l c
. ~71!

The fact that this degree of freedom has a negative eig
value means that direct computation of the partition funct
yields a divergent result. A similar problem for the thre
dimensional Ising model was solved by Langer@19#: one has
to compute the partition function in a stable stateP52T
~compression!, and then do an analytical continuation in p
rameter space to the state of interest. The free energy de
ops an imaginary part in the unstable state, related to
decay rate for fracture@4#: the situation is similar to that o
barrier tunneling in quantum mechanics@20#, where the
imaginary part in the energy gives the decay rate of a re
nance. We have explicitly implemented this prescription
the simplified calculation of the imaginary part of the fre
energy@9#: for the elastic material under a uniform isotrop
compression at infinity, allowing for the nucleation o
straight cuts of an arbitrary length with an arbitrary elliptic
opening@modev1 in Eq. ~65!#, we calculated the free energ
in a dilute gas approximation. We carefully performed t
analytical continuation to the metastable state describing
elastic material under the uniform isotropic stretchingT at
infinity, and found the imaginary part of the free energy,

ImFsimple~T!5
2

b2Tl2 S p
A

l2DexpH 232bma2

pT2~x11! J , ~72!

whereA is the area of the material andl is the ultraviolet
cutoff of the theory.@The version of Eq.~72!, as derived in
@9#, overcounts the contribution from zero-restoring-for
modes (2pA/l2) by factor 2. Because cracks tilted byu and
p1u are identical, the proper contribution from rotation
must bep, rather than 2p.#

The alternative to this analytical continuation approach
to deform the integration contour over the amplitude of t
unstable~negative eigenvalue! mode from the saddle poin
Dl 50 along the path of the steepest descent@19#. More
precisely, we regularize the direct expression for the partit
function

Z15Z0S p
A

l2D E
2l c

` dDl

l
expH 2bS al c2a

Dl 2

l c
D J ~73!
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~which diverges at bigDl ) by bending theDl integration
contour from the saddle into the complex plane:

Z15Z0S p
A

l2D E
2l c

0 dDl

l
expH 2bS al c2a

Dl 2

l c
D J

1Z0S p
A

l2Dexp~2bal c!E
0

6 i`dDl

l
expH ba

Dl 2

l c
J .
~74!

In Eqs. ~73! and ~74! the factor (pA/l2) comes from the
zero-restoring-force modes for rotating and translating
cut, andZ0 is the partition function for the uncracked mat
rial ~unity for the present simplified calculation!. The second
integral in Eq.~74! generates the imaginary part of the pa
tition function

ImZ156 1
2Z0S p

A

l2Dexp~2bal c!S pl c

bal2D 1/2, ~75!

with the6 sign corresponding to the analytical continuati
to either side of the branch cut of the partition function.@We
showed in @9# that the partition function, at least for th
system without fluctuations, is an analytical function in co
plex T with a branch cut along the lineTP@0,1`).# In a
dilute gas approximation the partition function for the ma
rial with N cutsZN is given by

ZN5Z0
~Z1 /Z0!

N

N!
, ~76!

which from Eq.~69! determines the material free energy

F52
1

b
lnZ52

1

b
ln(
N50

`

ZN52
1

b
lnZ02

1

b

Z1
Z0

. ~77!

Following Eqs.~75! and ~77! we find the imaginary part o
the free energy,

ImFsimple~T!56
2

b2Tl2 S 2bml2

x11 D 1/2S p
A

l2D
3expH 232bma2

pT2~x11! J . ~78!

Equation ~78! differs from Eq. ~72! only because for the
calculation of the imaginary part of the free energy in@9# we
used two degrees of freedom: the length of the cut and
elliptical opening, while in the current calculation there
only one degree of freedom. One can immediately res
Eq. ~72! by adding thev1 mode of Eq.~62! to the energy of
the elastic material~71! and integrating it out. From Eq.~62!,
thev1 mode generates an additional multiplicative contrib
tion Zv1 to the partition function for a single crackZ1, and
thus from Eq.~77! changes the imaginary part of the fre
energy for multiple cracksFsimple, ImFsimple→Zv1ImF

simple ,

Zv15E
2`

1`dv1
l

expH 2
2pmb

11x
v1
2J 5S 11x

2mbl2D 1/2, ~79!
e

-

-

ts

re

-

which cures the discrepancy between Eqs.~78! and ~72!.
Although the analytical continuation method is theoretica
more appealing, the calculation of the imaginary part throu
the deformation of the integration contour of the unsta
mode is more convenient once we include the quadratic fl
tuations. It is clear that both methods~properly implemented!
must give the same results.

We have already emphasized that the above calcula
ignores the quadratic fluctuations about the saddle point~ex-
cept for the uniform contraction or extension of the critic
droplet!, which may change the prefactor in expression~78!
for the imaginary part of the free energy, and may renorm
ize the surface tensiona. There are three kinds of quadrat
fluctuations we have to deal with.~I! Curvy cuts—changes in
the shape of the tear in the material: deviations of the bro
bonds from a straight-line configuration.~II ! Surface
phonons—fluctuations of the free surface of the crack abo
its equilibrium opening.~III ! Bulk phonons—fluctuations of
the elastic medium that are continuous at the cut bound
Just as for the surface phonon coordinatev1 above, we inte-
grate over these fluctuations about the saddle point crit
crack, keeping terms in the energy difference to quadr
order. We trace over all shapes and deformations in th
steps: we trace over bulk modes, fixing the shape of the
~the ‘‘curvy crack’’ of broken bonds! and fixing the shape o
the crack surface~the ‘‘surface phonons’’!, we then trace
over the surface phonons, and finally we trace over
shapes of the tear, the location of the crack, and superp
tions of many cracks.

In all cases the answer will depend upon the microsco
lattice-scale structure of the material. In field-theory la
guage, our theory needs regularization: we must decide
actly how to introduce the ultraviolet cutoffl. Here we dis-
cuss the lattice regularization, where the cutoff is explici
introduced by the interatomic distance, andz-function regu-
larization, common in field theory. We find that the preci
form of the surface tension renormalization and the prefac
in the imaginary part of the free energy depends on the re
larization prescription, but certain important quantities a
pear regularization independent.

The partition function of the elastic material, with one c
Z1 in the saddle point approximation~74!, will develop a
multiplicative factorZf upon inclusion of the quadratic fluc
tuationsZ1→ZfZ1 with

Zf5(
DE

exp~2bDE!. ~80!

A deviationDE from the saddle point energy is decompos
into three parts, with each part describing fluctuations of o
of the above-mentioned three types,

DE5
al c

2

p2l (
n51

`
1

n2
cn
21

2pm

11x (
n51

`

n~un
21vn

2!1DEcontinuous.

~81!

The first term in Eq.~81! accounts for the decrease in th
energy release due to the curving of the saddle point cu
length l c with the curvature
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k~x!5 (
n51

`

cnS 2l

l c
D 1/2sinpnx

l c
, xP@0,l c#. ~82!

The first term in Eq.~81! follows from Eq. ~27! with l5 l c
given by Eq.~67!. The second term in Eq.~81! describes the
asymmetric modes in the fluctuations of the free surface
the saddle point crack about its equilibrium opening shap

uasym~ t !1 ivasym~ t !5 (
n51

`

~un1 ivn!sinnq, qP@2p,p!,

~83!

where a point at the cut boundary is parametrized by
distancet5l c(11cosq)/2 from the cut end;qP@2p,0)
parametrize the lower boundary displacements andq
P@0,p) parametrize the displacements of the upper bou
ary points. The symmetric modes of the crack opening ab
its equilibrium opening shape are assumed to relax provid
the minimum increase in the elastic energy for a giv
$un ,vn%. The latter guarantees that all additional modes w
the continuous displacement at the cut boundary@the ones
which giveDEcontinuous—the last term in Eq.~81! describing
the bulk phonons#, decouple from$cn ,un ,vn% and are the
same as the ones for the uncracked material. Since the
vature modes$cn% give the equilibrium energy of the curv
cut, the response of the surface phonons to such a curvin
already incorporated, so the quadratic fluctuations$cn% can
be calculated independently from the quadratic fluctuati
$un ,vn%. The latter means that there is no coupling betwe
$cn% and $un ,vn% modes in Eq.~81!, and the spectrum o
$un ,vn% modes is the same as that for the straight cut
length l c , Eq. ~62!.

Strictly speaking, this decoupling is not trivial: perfe
decoupling depends on the microscopic~lattice size! descrip-
tion of the elastic medium—i.e., the regularization w
choose for the crack surface. To see this consider a reg
ization where an elastic medium is represented by a t
dimensional network of springs. The introduction of the c
can be viewed as splitting atoms~the split atom regulariza
tion! or splitting springs~the split spring regularization!. In
the first case the splitting introduces new degrees of freed
and, after the antisymmetric surface phonons are remo
one is left with the same number of the bulk degrees
freedom as for the system before splitting. Moreover, it
clear that, in this regularization, the bulk modes are ident
to those for the material without the cut: no springs were
and the atoms are glued back together. This also provid
microscopic interpretation of the ‘‘traction forces at th
seam’’ discussed in Sec. III: they become internal forc
exerted by each of the half atoms onto its partner. The a
native of splitting springs definitely changes the spectrum
the bulk phonons: the bulk modes have fewer degrees
freedom in this regularization than the medium before int
ducing the cut. In this paper we consider the split atom re
larization, which is technically easier to implement. Splitti
springs instead of atoms is a more physical regularizat
but one imagines that it will simply renormalize~shift! the
surface tension and leave our results otherwise unchan
~This shift is exactly what happens for the split atom a
z-function regularizations we consider here.!
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The last thing we have to settle before the calculation
Zf is the proper integration measure for the surface pho
modes$un ,vn%. ~We argued in the conclusion of Sec. II th
the integration measure for the modescn is Cartesian—
)n51

` dcn .) Here we show that because the function
measure in the displacement fields„u(x,y),v(x,y)… de-
fined at each point of the material (x,y) is naturally
Cartesian—D@u(x,y)/l]D@v(x,y)/l#—the integration mea-
sure for the modes$un ,vn% must be of the form
)n51

` (1/2p)dundvn /l
2.

An arbitrary elastic displacement field for the m
terial with a curvy cut is defined by specifying its bu
part „ubulk(x,y),vbulk(x,y)… @point (x,y) can be any-
where except at the cut boundary# and the cut part
„ucut

1 (t),ucut
2 (t),vcut

1 (t),vcut
2 (t)… @the cut displacements are de

fined along the cut and are parametrized by the dista
t5l c(11cosq)/2, qP@0,p) from the cut end; the1 and
2 superscripts are correspondingly the displacements a
upper and lower boundaries of the cut#. It is helpful to visu-
alize the introduction of the cut into the material as splitti
in half each of the atoms of the material along the cut bou
ary. Then, the bulk part of the displacement field combin
degrees of freedom of all atoms left untouched by splittin
and the cut part describes the displacements of the split o
The original measure is naturally

D@ubulk~x,y!/l#D@vbulk~x,y!/l#D@ucut~ t !
1ucut~ t !

2/l2#

3D@vcut~ t !
1vcut~ t !

2/l2#.

First we separate the symmetric and asymmetric parts in
crack opening displacement

uasym~ t !5 1
2 „ucut

1 ~ t !2ucut
2 ~ t !…,

vasym~ t !5 1
2 „vcut

1 ~ t !2vcut
2 ~ t !…,

~84!

usym~ t !5 1
2 „ucut

1 ~ t !1ucut
2 ~ t !…,

vsym~ t !5 1
2 „vcut

1 ~ t !1vcut
2 ~ t !….

Because the Jacobian of the transformation

„ucut~ t !
1,ucut~ t !

2,vcut~ t !
1,vcut~ t !

2
…

→„uasym~ t !,vasym~ t !,usym~ t !,vsym~ t !…

is constant,

U ]~ucut~ t !
1,ucut~ t !

2,vcut~ t !
1,vcut~ t !

2!

]„uasym~ t !,vasym~ t !,usym~ t !,vsym~ t !… U5 1

4
, ~85!

the integration measure remains Cartesian:

D@ubulk~x,y!/l#D@vbulk~x,y!/l#D@usym~ t !vsym~ t !/l2#

3D@uasym~ t !vasym~ t !/4l2#.

Now we can combine the bulk and symmetric cut parts of
measure by introducing the continuous displacement fie
„uc(x,y),vc(x,y)… everywhere, including the cut boundar
The integration measure becomes

D@uc~x,y!/l#D@vc~x,y!/l#D@uasym~ t !vasym~ t !/4l2#.
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According to our decomposition, we specify the asymme
cut opening, and find the equilibrium displacement fie
that minimize the increase in the elastic energy. In ot
words, „uasym(t),vasym(t)… determine „uc

min(uasym,vasym),
vc
min(uasym,vasym)…. The transformations

uc~x,y!5uc
min~uasym,vasym!1ũc~x,y!,

~86!

vc~x,y!5vc
min~uasym,vasym!1 ṽc~x,y!,

then completely decouple the surface phonon modes and
continuous modes that contribute toDEcontinuousin Eq. ~81!.
The Jacobian of the transformation

„uc~x,y!,vc~x,y!,uasym~ t !,vasym~ t !…

→„ũc~x,y!,ṽc~x,y!,uasym~ t !,vasym~ t !…

is unity ~the transformation is just a functional shift! and so
the measure remains unchanged,

D@ ũc~x,y!/l#D@ ṽc~x,y!/l#D@uasym~ t !vasym~ t !/4l2#.

The Fourier transformation~83! is orthogonal, but the Fou
rier modes are not normalized:

E
0

p

dqsin2nq5
p

2
. ~87!

The latter means that at the final stage of the change
variables „uasym(t),vasym(t)…→$un ,vn% there appear the
Jacobian)n51

` (2/p), and so we end up with the integratio
measure)n51

` (1/2p)dundvn /l
2.

From Eqs.~80! and~81!, with the proper integration mea
sure over the surface phonon modes, we find

Zf5 )
n51

` E
2`

1`

dcn

3expH 2b
al c

2

p2ln2
cn
2J )

n51

` E E
2`

1` 1

2p

dundvn
l2

3expH 2b
2pmn

11x
~un

21vn
2!J Zcontinuous

5 )
n51

` S p3ln2

bal c
2 D 1/2)

n51

`
11x

4pbml2n
Zcontinuous, ~88!

where

Zcontinuous5 (
DEcontinuous

exp~2bDEcontinuous!. ~89!

BecauseDEcontinuouscorresponds to the degrees of freedo
of the uncracked material~with the same energy spectrum!,
Zcontinuouscontributes to the partition functionZ0 of the ma-
terial without the crack, which according to Eq.~77! drops
out from the calculation of the imaginary part of the fr
energy. All the products overn in these expressions diverg
we need a prescription for cutting off the modes at sh
wavelengths~an ultraviolet cutoff!.
c
s
r

the

of

rt

First we will consider thez-function regularization. In
this regularization prescription@21#, the infinite product of
the typeD5)n51

` ln is evaluated by introducing the functio
Dz(s),

Dz~s!5 (
n51

`
1

ln
s , ~90!

so that

D5exp„2Dz8~0!…. ~91!

It is assumed that sum~90! is convergent in some region o
the complexs plane, and that it is possible to analytical
continueDz(s) from that region tos50. From Eq.~88! we
find

Zf5D1D2Zcontinuous, ~92!

whereD1 andD2 are obtained, following Eq.~91!, from the
correspondingz functionsD1z(s) andD2z(s):

D1z~s!5S bal c
2

p3l D s/2(
n51

`
1

ns
5S bal c

2

p3l D s/2zR~s!,

~93!

D2z~s!5S 4pbml2

11x D s(
n51

`

ns5S 4pbml2

11x D szR~2s!.

zR(s) in Eqs.~93! is the standard Riemannz function, holo-
morphic everywhere in the complexs plane except at
s51. Noting that z(0)52 1

2 and z8(0)52(ln2p)/2, we
find, from Eqs.~91!–~93!,

Zf5S 4bal c
2

pl D 1/4S 2bml2

11x D 1/2Zcontinuous. ~94!

From Eqs.~77! and ~88! we find the imaginary part of the
free energy in thez-function regularization,

ImFz5S 16b3am2l5

p~11x!2 D 1/4S l c

l D 1/2ImFsimple ~95!

where ImFsimple is given by Eq.~78!.
Second, we consider lattice regularization, which is m

elaborate. We represent a curvy cut byN115l c /l seg-
ments of equal length parametrized by the kink ang
$a i%, iP@1,N#. With our conventional parametrization o
the cutt5l c(11cosq)/2,q@2p,p), the asymmetric modes
of the crack opening displacements$uasym(t),vasym(t)% are
linear piecewise approximations for given asymmetric d
placements of the ‘‘split’’ kink atoms$ui

asym,v i
asym%, i

P@1,N#. More precisely, ift i and t i11 parametrize the adja
cent kinks, we assume

uasym~ t !5ui
asym1

ui11
asym2ui

asym

t i112t i
~ t2t i !,

~96!

vasym~ t !5v i
asym1

v i11
asym2v i

asym

t i112t i
~ t2t i !
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for tP@ t i ,t i11#. From the integration measure argumen
for the z-function regularization, it is clear that the in
tegration measure in this case must
) i51
N da i) i51

N dui
asymdv i

asym/4l2. Now we have to write down
the lattice regularization of the quadratic deviationDE from
the saddle point energy~81!. From Eqs.~19! and ~21!, the
curving of the critical cutl c will reduce the energy releas
by DEc,

DEc5
T2p~11x!l c

2

32m (
i , j51

N

a ia jM i j
c 5al c (

i , j51

N

a ia jM i j
c ,

~97!

where

Mi j
c 52

i j

~N11!2
1
min~ i , j !

N11
. ~98!

From Eq. ~81! the surface phonon contribution toDE is
given by

DEp5
2pm

11x (
n51

1`

n~un
21vn

2!, ~99!

where, from Eq.~83!,

un5
2

pE0
p

dquasym„t~q!…sinnq,

~100!

vn5
2

pE0
p

dqvasym„t~q!…sinnq.

In principle, for a given piecewise approximation of th
asymmetric modes, Eq.~96!, determined by$ui

asym,v i
asym%,

iP@1,N#, one could calculate the Fourier amplitudes acco
ing to Eq. ~100!, and then plug the result into Eq.~99! to
obtainDEp in terms of$ui

asym,v i
asym%. We will use another

approach. Usinguasym(0)5uasym(l c)50 @with the same
equalities forvasym(t)#, we integrate Eq.~100! by parts to
obtain

un5
2

pE0
p

dq
duasym„t~q!…

dq

cosnq

n
,

~101!

vn5
2

pE0
p

dq
dvasym„t~q!…

dq

cosnq

n
.

Substituting Eq.~101! into Eq. ~99!, we find

DEp5
8m

p~11x!
E
0

pE
0

p

dq1dq2Fduasym~q1!

dq1

duasym~q2!

dq2

1
dvasym~q1!

dq1

dvasym~q2!

dq2
GK~q1 ,q2!, ~102!

where

K~q1 ,q2!5 (
n51

`
cosnq1cosnq2

n
. ~103!

Following @22#
s

-

(
k51

`
coskx

k
5
1

2
ln

1

2~12cosx!
, ~104!

we find an analytical expression for the kernel, Eq.~103!,

K~q1 ,q2!52 1
2 ln22 1

2 lnucosq12cosq2u. ~105!

Finally, introducingMi j
p from

(
i , j51

N

~ui
asymuj

asym1v i
asymv j

asym!Mi j
p

5E
0

pE
0

p

dq1dq2Fduasym~q1!

dq1

duasym~q2!

dq2

1
dvasym~q1!

dq1

dvasym~q2!

dq2
GK~q1 ,q2!, ~106!

we obtain

DEp5
8m

p~11x! (
i , j51

N

~ui
asymuj

asym1v i
asymv j

asym!Mi j
p .

~107!

To calculateMi j
p we substitute Eq.~96! directly into the

right-hand side of Eq.~106!, and read off the correspondin
coefficient, given by the following three equations:

Mi j
p5 f 2~ i , j !1 f 2~ i11,j11!2 f 2~ i11,j !2 f 2~ i , j11!

f 2~ i , j !5
3

4
1

1

~cosq i212cosq i !~cosq j212cosq j !

3@ f 1~ i , j !1 f 1~ i21,j21!

2 f 1~ i21,j !2 f 1~ i , j21!#,

~108!

f 1~ i , j !5H ~cosq i2cosq j !
2

4
lnUsinq i2q j

2
sin

q i1q j

2 U,
if iÞ j

0 otherwise,

whereq050, qN115p, andq i parametrizes thei th kink
~kinks are equally spaced in real space!

q i5arccosS 12
2i

N11D , iP@1,N#. ~109!

From Eqs.~97! and ~107! we find the quadratic deviation
from the saddle point energy

DE5DEc1DEp1DEcontinuous

5al c (
i , j51

N

a ia jM i j
c 1

8m

p~11x! (
i , j51

N

~ui
asymuj

asym

1v i
asymv j

asym!Mi j
p1DEcontinuous. ~110!

Thus the multiplicative factorZf to the partition function of
the elastic material with one cut in the lattice regularizati
is given by
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Zf5 )
n51

N E
2`

1`

danexpH 2bal c (
i , j51

N

a ia jM i j
c J )

n51

N E E
2`

1`dun
asymdvn

asym

4l2

3expH 2b
8m

p~11x! (
i , j51

N

~ui
asymuj

asym1v i
asymv j

asym!Mi j
p J Zcontinuous

5S p

bal c
D N/2det21/2Mi j

c S p2~11x!

32bml2 D Ndet21Mi j
p Zcontinuous, ~111!
f

Eq

th

its

on-

ce
whereZcontinuousis given by Eq.~89!.
The determinant coming from the curvy cutsMi j

c can be
calculated analytically. In Sec. II we showed that sinpnx/l
are eigenvectors of operator~23!, the continuous analog o
Mi j

c . One can explicitly check that fornP@1,N#, vectors

mW n5$sinpni/(N11)% are in fact eigenvectors ofMi j
c with ei-

genvalues

ln5
1

4~N11!
sin22

pn

2~N11!
, ~112!

and so

detMi j
c 5 )

n51

N

ln5~N11!2~N11!. ~113!

To obtain Eq.~113!, we take the limitx→0 of

sin2~N11!x522N11 )
k50

2N11

sinS x1
kp

2~N11! D ~114!

@22#, to obtain

N1154N )
k51

2N11

sin
kp

2~N11!
54N)

k51

N

sin2
kp

2~N11!
. ~115!

With Eq. ~115!, the calculation in Eq.~113! becomes
straightforward. Recalling thatN115l c /l, we can rewrite
Eq. ~111! making use of Eq.~113!,

Zf5S bal

p D 1/2S p

bal D l c/2lS l c

l D 1/2S 32bml2

p2~11x! D
1/2

3S p2~11x!

32bml2 D l c/2l

det21Mi j
p Zcontinuous. ~116!

Note that the first three factors on the right-hand side of
~116! ~coming from the curvy cut fluctuations! have the
asymptotic form,N→`,

S bal

p D 1/2S p

bal D l c/2lS l c

l D 1/2'Nc2exp$c01c1N%, ~117!

with c050, c15 ln(p/bal)/2 andc251/2.
We were unable to obtain an analytical expression for

surface phonon determinant detMi j
p . For N52, . . .,100

kinks we calculate the determinant numerically and fit
logarithm with f (N)5p01p1N1p2lnN ~Fig. 6!,
.

e

detMi j
p5Np2exp$p01p1N%. ~118!

We find p050.0960.02, p150.16660.002, andp250.24
60.05.@We expect that the surface phonon fluctuations c
tribute to Zf similar to the curvy cut fluctuations~117!—
hence the form of the fitting curve for detMi j

p .# From Eqs.
~116!–~118!,

Zf5exp$p12p0%S 32b2mal3

p3~11x! D 1/2S l c

l D 2p211/2

3S p3~11x!exp$22p1%

32b2mal3 D l c/2l

Zcontinuous, ~119!

which, following, Eq.~77!, gives the imaginary part of the
free energy in the lattice regularization

ImF lattice5exp$p12p0%S 32b2mal3

p3~11x! D 1/2S l c

l D 2p211/2

3S p3~11x!exp$22p1%

32b2mal3 D l c/2l

ImFsimple, ~120!

with ImFsimple from Eq. ~78!.

FIG. 6. We numerically calculate the logarithm of the surfa
phonon determinant detMi j

p , for N52, . . . ,100kinks, and fit the
result with f (N)5p01p1N1p2lnN.
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Throughout the calculation we ignored the kinetic term
the energy of the elastic material: their behavior is rat
trivial, as momenta and positions decouple. Because we
troduce new degrees of freedom with our ‘‘splitting atom
model for the crack, we discuss the effects of the correspo
ing new momenta. Before ‘‘splitting,’’ (l c /l21) atoms
along the cut contribute

Zkinetic
u 5 )

i51

l c /l21 E E dpixdpi yS l

2p\ D 2
3expH 2b (

j51

l c /l21 pj x
2 1pj y

2

2m J ~121!

to the partition function of the uncracked materialZ0. @We
do not consider the contribution to the partition functi
from the bulk atoms—they contribute in a same way toZ0 as
they do toZ1, and thus drop out from the calculation of th
imaginary part Eq.~77!.# The configuration space integratio
measure for a classical statistical system isdxdp/2p\; be-
cause we integrated out the displacements with the we
1/l to make them dimensionless, the momentum integ
have measuredpl/2p\, Eq. ~121!. The formation of the cut
increases the number of the kinetic degrees of freedom
(l c /l21) ~the number of split atoms!. The split atoms con-
tribute

Zkinetic
s 5 )

i51

2~ l c /l21! E E dpixdpi yS l

2p\ D 2
3expH 2b (

j51

2~ l c /l21! pj x
2 1pj y

2

m J ~122!

to the partition function of the material with the cut. Fro
Eqs. ~77!, ~121!, and ~122! the kinetic energy of the elasti
material modify the imaginary part of the free energy by
factorZk :

ImF lattice→ZkImF
lattice, ~123!

with

Zk5
Zkinetic
s

Zkinetic
u 5S ml2

8pb\2D l c /l21

. ~124!

One might notice that for both (z function and lattice!
regularizations the effect of the quadratic fluctuations can
absorbed into the renormalization of the prefactor of
imaginary part of the free energy calculated in a simplifi
model~without the quadratic fluctuations!, Eq. ~78!, and the
material surface tensiona: the multiplicative factor to the
imaginary part of the free energy has a generic form

ImFsimple→n0S l c

l D n1expH n2 l c

l J ImFsimple, ~125!

where the first two terms renormalize the prefactor
ImFsimple and the other one can be absorbed into ImFsimple

through the effective renormalization of the surface tensi
r
n-

d-

ht
ls

y

e
e

f

a→a r5a1
1

2bl
n2. ~126!

From Eqs.~123! and~124! it follows that, in the case of the
lattice regularization, the inclusion of the kinetic energy
the elastic material shifts the constantsn0 andn2, thus pre-
serving Eq.~125!:

n0→n0S 8pb\2

ml2 D ,
~127!

n2→n21 ln
ml2

8pb\2 .

The calculation of the kinetic terms in thez-function regu-
larization is more complicated. However, we have no rea
to believe that it will change form~125!.

V. ASYMPTOTIC BEHAVIOR OF THE INVERSE
BULK MODULUS

In our earlier work@9#, we discussed how the therma
instability of elastic materials with respect to fracture und
an infinitesimal stretching load determines the asympto
behavior of the high-order elastic coefficients. Specifica
for the inverse bulk modulusK(P) in two dimensions~ma-
terial under compression!,

1

K~P!
52

1

A S ]A

]PD
b

5c01c1P1•••1cnP
n1•••, ~128!

we found, within linear elasticity and ignoring the quadra
fluctuations,

cn11

cn
→2n1/2S p~x11!

64bma2 D 1/2 as n→`, ~129!

which indicates that the high-order termscn roughly grow as
(n/2)!, and so the perturbative expansion for the inverse b
modulus is an asymptotic one.

In this section we show that, except for the temperatu
dependent renormalization of the surface tens
a→a r5a1O(1/b), Eq. ~129! remains true even if we in-
clude the quadratic fluctuations around the saddle point~the
critical crack!; moreover, we argue that Eq.~129! is also
unchanged by the nonlinear corrections to the linear ela
theory near the crack tips.

We review how one can calculate the high-order coe
cients of the inverse bulk modulus@9#. The free energy
F(T) of the elastic material is presumably analytical in t
complexT plane function for smallT except for a branch cu
TP@0,1`)—the axis of stretching.~We show this explicitly
in the calculation within linear elastic theory without th
quadratic fluctuations@9#.! It is assumed here that neithe
nonlinear effects near the crack tips nor the quadratic fl
tuations change the analyticity domain of the free energy
reasonably smallT ~i.e.,T<Y). One can then use Cauchy
theorem to express the free energy of the material un
compressionF(2P) ~Fig. 7!:
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F~2P!5
1

2p i Rg

F~T!

T1P
dT. ~130!

The contribution to Eq.~130! from the arcEFA goes to
zero as the latter shrinks to a point. In this limit we have

F~2P!5
1

2p i E0
BF~T1 i0!2F~T2 i0!

T1P
dT

1
1

2p i RBCD
F~T!

T1P
dT

5
1

pE0
BImF~T!

T1P
dT1

1

2p i RBCD
F~T!

T1P
dT. ~131!

As was first established for similar problems in field theor
@23–25#, Eq. ~131! determines the high-order terms in the
expansion of the free energyF(2P)5(nf nP

n

f n5
~21!n

p E
0

BImF~T!

Tn11 dT1
~21!n

2p i R
BCD

F~T!

Tn11 dT. ~132!

The second integral on the right-hand side of Eq.~132! pro-
duces a convergent series; and is hence unimportant to
asymptotics: the radius of convergence by the ratio test is
the order the radius of the circleBCD ~i.e., larger thanP by
construction!. The first integral generates the asymptotic di
vergence of the inverse bulk modulus expansion:

f n→
~21!n

p E
0

BImF~T!

Tn11 dT as n→`. ~133!

Once a perturbative expansion for the free energy is know
one can calculate the power series expansion for the inve
bulk modulus using the thermodynamic relation

FIG. 7. The free energy of the elastic materialF(T) is analytical
in the complexT plane except for a branch cutTP@0,1`). This
allows a Cauchy representation for the free energyF(2P) of the
material under compression.
the
of

-

n,
se

1

K~P!
5

1

PA S ]F~2P!

]P D
b

, ~134!

so that

cn11

cn
5

~n13! f n13

~n12! f n12
. ~135!

Note that because the saddle point calculation becomes m
and more accurate asT→0, and because the integrals in E
~133! are dominated by smallT asn→`, using the saddle
point form for the imaginary part of the free energy yiel
the correctn→` asymptotic behavior of the high-order co
efficients f n in the free energy. Following Eqs.~78! and
~125! the imaginary part of the free energy including th
quadratic fluctuations is given by

ImF~T!5
2n0

b2Tl2 S 12
n1n2
2bla r

D
3S 2bml2

x11 D 1/2S 32ma r

pT2~x11!l
D n1S p

A

l2D
3expH 232bma r

2

pT2~x11! J , ~136!

wherea r is given by Eq.~126!. Note thatn0, n1, n2, and
a r in Eq. ~136! are regularization dependent coefficients,
our calculations in Sec. IV. From Eqs.~133! and ~135! we
find

cn11

cn
→2S p~x11!

32bma r
2 D 1/2 ~n13!G~n/21n112!

~n12!G~n/21n113/2!
. ~137!

In the limit n→`, Eq. ~137! is independent ofB in Eq.
~133!. Using

G~n/21n112!

G~n/21n113/2!
→S n2D

1/2

as 5 n→`, ~138!

we conclude from Eq.~137! that

cn11

cn
→2n1/2S p~x11!

64bma r
2 D 1/2 as n→`. ~139!

Equation~139! is a very powerful result: it shows that apa
from the temperature dependent~regularization dependent!
correction to the surface tension~126!, the asymptotic ratio
of the high-order coefficient of the inverse bulk modulus
unchanged by the inclusion of the quadratic fluctuations~at
least for the regularizations we have tried!. One would defi-
nitely expect the surface tension to be regularization dep
dent: the energy to break an atomic bond explicitly depe
on the ultraviolet~short scale! physics, which is excluded in
the thermodynamic description of the system. This h
analogies with calculations in field theory, where physic
quantities calculated in different regularizations give t
same answer when expressed in terms of the renorma
masses and charges of the particles@8#. Here only some
physical quantities appear regularization independent.
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The analysis that leads to Eq.~139! is based on linear
elastic theory that is known to predict unphysical singula
ties near the crack tips. From@10#, the stress tensor compo
nentsyy , for example, has a square root divergence

syy;TS l c

4r D
1/2

as r→0 ~140!

as one approaches the crack tip. One might expect tha
proper nonlinear description of the crack tips changes
asymptotic behavior of the high-order elastic coefficien
We argue here that linear analysis gives, however, the
rect asymptotic ration~139!: the linear elastic behavior
dominates thenonlinearasymptotics within our model.

It is clear that the vital question is how the energy rele
of the saddle point~critical! crack is changed by nonlinea
processes~microcracking, emission of dislocations, etc.! in
the vicinity of the crack tips asT→0. Following@26#, in the
crack system we distinguish two well-defined zones:
outer zone, consisting of exclusively linear elastic mater
transmits the applied traction to the inner, crack tip zo
where the nonlinear processes take place~Fig. 8!. Such sepa-
ration introduces two length scales to the problem:r nl and
r cross. The first scale determines the size of the nonlin
process zone near the crack tips. It can be readily estim
from Eq. ~140! by requiring the stresses at the boundary
the nonlinear zone to be of the order atomic oness i j;Y:

r nl;l cS TYD 2; a

Y
. ~141!

The second length scale is a crossover lengthr cross, where
the elastic fields near a crack tip deviate from the inner z
Ar strain asymptotics to depend on the outer-zone bound
conditions ~i.e., the length of the crack in our case!. Nor-
mally, r crossis only a few times smaller than the crack leng
@15,27#—for the present calculation we assum
r cross;l c;Ya/T2, Eq. ~67!.

FIG. 8. In the crack system there are two well-defined zones:
outer zone, consisting of exclusively linear elastic material, and
inner, crack tip zone where the nonlinear processes take place.
separation introduces two length scales: the first (r nl) determines
the size of the nonlinear zone, and the second (r cross) gives the scale
where the elastic fields near the crack tip deviate from the o
predicted by the SSY approximation to comply with the outer zo
boundary conditions.
-

he
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First, let us consider the energy in the nonlinear zone. T
saddle point energy isal c , and diverges as 1/T2 asT→0,
while the elastic energy in the nonlinear zoneEnl is bounded
by the linear value

Enl;E
0

rnl
drrs i j

2 ~r !/Y;a2/Y. ~142!

SinceEnl is fixed asT→0, it renormalizesn0 in Eq. ~125!,
and hence does not affect the asymptotics, Eq.~139!.

Second, we consider how the existence of the inner~non-
linear! zone changes the energy in the outer~linear! zone.
The elastic equations around the crack tip allow many so
tions @27#; in each, the stressess i j have the form
Cbr

bf b(u), r nl!r!r cross, in polar coordinates (r ,u) cen-
tered at the crack tip, whereb is a half integer, theCb are
constants, and thef b are known trigonometric functions. Lin
ear fracture mechanics predictsb52 1

2 to be the most singu-
lar solution @compare with Eq.~140!# only because mode
with b,2 1

2 would give rise to singular displacements at t
crack tip. Incorporation of the nonlinear zoner,r nl , how-
ever, removes this constraint. In other words, the nonlin
zone introduces new boundary conditions for linear elastic
solutions, allowing them to be more singular. The dominan
of b52 1

2 solution is known as the small scale yieldin
~SSY! approximation. Analyzing the mode III antiplan
shear fracture, Hui and Ruina argued@28# that the SSY ap-
proximation becomes more and more accurate
e5r nl /r cross→0. ~They expect that the same result can
extended for mode I fracture.! Clearly, in our casee→0 as
T→0; thus the dominant contribution still comes fro
b52 1

2 solution. In fact, following@27# we expect

s i j $Cn%5TFC21/2S l c

r D 1/21 (
n5$ . . . ,27/2,25/2,23/2%

CnS r

r nl
D n

1 (
n5$ 1/2, 3/2, 5/2, . . .%

CnS r

l c
D nG . ~143!

The inelastic stresses at the outer boundary of the nonlin
zone r;r nl are of orderY, thus, from Eq.~143!, for n
,21

2, Cn5O(e21/2) ~recall that e5r nl /r cross;(T/Y)2#.
These more singular terms in turn generate corrections
Cn with n> 1

2 of orderO(e). @One can see this from the fac
that the dominant contribution from the more singular ter
at r;l c is C23/2(l c /r nl)

23/2;e.# The dependence ofCn in
Eq. ~143! on the polar angleu is implied.

There is a formal analogy between the arguments p
sented here for the stress fields in the crossover zone with
quantum mechanical problem of the bound states of the
drogen atom. When we treat the hydrogen nucleus as a p
charge, for each orbital quantum number, the electron w
function has two solutions near the origin~the position of the
nucleus!: one is finite asr→0, and the other one is divergen
@29,30#. In a point charge problem one immediately discar
the divergent solution because it cannot be normalized,
thus cannot represent a bound state. However, in a finite-
nucleus model one notices that the electron wave func
outside the nucleus is a mixture of the finite and the div
gent solutions of the point charge problem. The normali
tion is resolved because inside the nucleus the electron w
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function satisfies a different equation and becomes fin
The radius of the nucleus serves as a short-distance c
similar to r nl in the crack problem.

The change in the contribution to the saddle point ene
from the outer zone as a result of the introduction of
nonlinear zone,dEouter, is given by

dEouter;E
rnl

l c
drr

s i j
2 $Cn%2s i j

2 $Cn
linear%

Y
. ~144!

The dominant contribution to Eq.~144! comes from the cross
term betweenn52 1

2 and23
2 corrections in Eq.~143!,

dEouter;
a2

Y
ln
T

Y
; ~145!

the correction renormalizes then1 coefficient in the imagi-
nary part of the free energy~136! ~regularization dependen
in a first place!, leaving the asymptotic ratio~139! intact.

It is no surprise that the nonlinear effects do not chan
the generic form of the imaginary part~136!. The detailed
nonlinear description of the crack tips is a specification
the ultraviolet~short scale! physics, and thus is nothing bu
another choice of the regularization. From our experie
with z-function and lattice regularizations, we naturally e
pect that thisnonlinear regularization preserves the form o
the imaginary part~136!.

Finally, let us consider the enhanced nucleation of s
ondary cracks in the high-strain outer-zone region—a p
sible cause for breakdown of the ‘‘dilute gas’’ approxim
tion. Inside the nonlinear zone of the saddle point crack,
critical crack length for a second crack is of the ordera/Y
@from Eq.~67! with T;Y#, and thus such microcracks can b
easily created. In fact, the nucleation of these microcra
may well be the dominant mechanism of the main cra
propagation. Microcrack nucleation in the nonlinear zo
will change the stress fields near the crack tips, but, as
discuss above, has little impact on the saddle point ene
~as the total energy in the nonlinear zone is finite!. We show
now that such secondary crack nucleation is exponenti
confined to the nonlinear zone of the main crack. The pr
ability W(r 0) of the second crack nucleated somewhere
r.r 0;r nl (r50 corresponds to a crack tip! is given by

W~r 0!;E
r0

1`rdr

l2 exp$2bal ~r !%, ~146!

wherel (r ) is a critical crack length at distancer from the
tip of the critical crack. From Eq.~67!, with T replaced with
the stress field near the crack tip given by Eq.~140!, we find

l ~r !;
aY

s i j ~r !2
;r . ~147!

Equation~146! with Eq. ~147! gives

W~r 0!;E
r0

1`rdr

l2 exp$2bar %5
11bar 0
~bal!2

exp$2bar 0%.

~148!
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The exponential dependence ofW(r 0) on the boundary of
the nonlinear zoner 0;r nl in Eq. ~148! means that the nucle
ation of another crack~in addition to the saddle point one! is
exponentially confined to the nonlinear zone, justifying t
dilute gas approximation.

VI. OTHER GEOMETRIES, STRESSES,
AND FRACTURE MECHANISMS

In this section we discuss generalizations of our mod
more exactly its simplified version without the quadra
fluctuations. We will do five things. In Sec. VI A we calcu
late the imaginary part of the free energy for arbitrary u
form loading, and find high-order nonlinear corrections
Young’s modulus. We discuss the effects of dislocations a
vacancy clusters~voids! in Secs. VI B and VI C. Section
VI D deals with three-dimensional fracture through t
nucleation of penny-shaped cracks: we calculate the im
nary part of the free energy and the asymptotic ratio of
successive coefficients of the inverse bulk modulus. Fina
in Sec. VI E we consider a nonperturbative effect: the va
pressure of a solid gas of bits fractured from the crack s
faces, and show how it affects the saddle point calculatio

A. Anisotropic uniform stress and high-order corrections
to Young’s modulus

We calculated the essential singularity of the free ene
at zero tension only for uniformisotropic loads at infinity.
Within the approximation of ignoring the quadratic fluctu
tions, we can easily generalize to any uniform loading.
general, consider an infinite elastic material subject to a u
form asymptotic tension withsyy5T, sxx5eT (0<e,1),
andsxy50. Using the strain-stress analysis of@10# and fol-
lowing Eqs.~2! and~3!, we find the energyErelease, released
from the creation of the straight cut of lengthl tilted by
angleu from thex axis,

Erelease5
pT2l 2~11x!

64m
@~11e!1~12e!cos2u#. ~149!

The isotropic result~19! is restored fore51. The important
feature that comes into play is that the crack rotation cea
to be a zero-restoring-force mode. Treating the crack rota
to quadratic order inu from the saddle point valueu50, we
obtain the total energy of the crackE(Dl ,u), similar to Eqs.
~66!–~68! and ~71!,

E~Dl ,u!5al c2
aDl 2

l c
1al c~12e!u2. ~150!

As before,Dl is the deviation of the crack length from th
saddle point valuel c , still given by Eq. ~67!. Following
Eqs. ~73!–~77!, the imaginary part of the free energy for
dilute gas of straight cuts, excluding all quadratic fluctu
tions except for the uniform contraction-expansion~mode
Dl ) and the rotation~mode u) of the critical droplet, is
given by
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ImFsimple~T,e!56
p

2b2al S Al2D
3S 1

12e D 1/2expH 232bma2

pT2~x11! J . ~151!

One immediately notices an intriguing fact: thee depen-
dence of the imaginary part is only in the prefactor, which,
we already know is regularization dependent. In particu
the latter means that the inverse Young’s modulus—the e
tic coefficient corresponding to the transition with pa
e50—will have the same asymptotic behavior as that of
inverse bulk modulus~139!: the asymptotic ratio of the high
order elastic coefficients of the inverse Young’s modu
Y(P)

1

Y~P!
52

1

A S ]A

]PD
b

5Y01Y1P1•••1YnP
n1••• ~152!

@P in Eq. ~152! is a uniaxial compression# is given by

Yn11

Yn
→2n1/2S p~x11!

64bma2 D 1/2 as n→`. ~153!

B. Dislocations

We have forbidden dislocation nucleation and plastic fl
in our model. Dislocation emission is crucial for ductile fra
ture, but by restricting ourselves to a brittle fracture
defect-free materials we have escaped many complicati
Dislocations are in principle important: the nucleation@31#
barrierEdis for two edge dislocations in an isotropic linea
elastic material under a uniform tensionT with equal and
opposite Burger’s vectorsbW is

Edis5
Yb2

4p~12s2!
ln
Y

T
1E0 , ~154!

whereE0 is a T-independent part that includes the disloc
tion core energy. The fact thatEdis grows like 1/lnT as
T→0 ~much more slowly than the corresponding barrier
cracks! tells us that in more realistic models dislocations a
the resulting plastic flow@32# cannot be ignored. While dis
locations may not themselves lead to a catastrophic insta
ity in the theory~and thus to an imaginary part in the fre
energy?!, they will strongly affect the dynamics of crac
nucleation~e.g., crack nucleation on grain boundaries a
dislocation tangles! @15,26#.

C. Vacancy clusters

We ignore void formation. It would seem natural to ass
ciate the negative pressure~tension! (2T) times the unit cell
size with the chemical potentialm of a vacancy. At negative
chemical potentials, the dominant fracture mechanism
comes the nucleation of vacancy clusters or voids~rather
than Griffith-type microcracks!, as noted by Golubovic´ and
Peredera@33#. If we identify the chemical potential of a va
cancy with2T, we find the total energy of creation a circu
lar vacancy of radiusR, Evac(R), to be

Evac~R!52pRa2TpR2. ~155!
s
r,
s-

e
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From Eq. ~155! the radius of the critical vacancy i
Rc5a/T, and its energy is given byEvac(Rc)5pa2/T. A
saddle point is a circular void because a circular void ga
the most energy (; area of the void! for a given perimeter
length. In principle, the exact shape of the critical cluster
also affected by the elastic energy release. However,

Erelease~Rc!5
pT2Rc

2~3x11!

8m
5

pa2~3x11!

8m
~156!

is fixed asT→0, and thus the energy of the vacancy is dom
nated byEvac(Rc) for smallT. @To obtain Eq.~156! we used
the strain-stress analysis of@10# and expression~3! for the
energy release.# Using the framework developed for th
crack nucleation, we find that, in the case of voids~again,
ignoring the positive frequency quadratic fluctuations! the
imaginary part of the free energy is given by

ImFvacancy
simple ~T!56

1

2b S Al2D S 1

bTl2D 1/2expH 2pba2

T J .
~157!

The special feature of calculation~157! is that translations
are the only zero modes: the rotation of a circular vaca
cluster does not represent a new state of the system. F
Eq. ~157! we obtain, following Eqs.~132! and ~135!, the
asymptotic ratio of the high-order coefficients of the inver
bulk modulus,

cn11

cn
→2

n

pba2 . ~158!

The divergence of the inverse bulk modulus is much stron
in this case: the high-order coefficients grow ascn;n!,
rather than as (n/2)! ~for the fracture through the crac
nucleation!.

Whether ~158! is a realistic result is an open questio
Fracture through vacancy cluster nucleation is an unlik
mechanism for highly brittle materials: the identification
m with (2T) demands a mechanism for relieving elas
tension by the creation of vacancies. The only bulk mec
nism for vacancy formation is dislocation climb, which mu
be excluded from consideration — the dislocations in hig
brittle materials are immobile@26#. Vacancy clusters migh
be important for the fracture of ductile~nonbrittle! materials.
However, the nucleation of vacancies must be conside
parallel with the nucleation of dislocations. Because at sm
T dislocations are nucleated much more easily@Eq. ~154!#
than vacancy clusters at low stresses, the dominant b
mode of failure is much more likely to be crack nucleation
a dislocation tangle or grain boundary—as indeed is
served in practice.

D. Three-dimensional fracture

Our theory can be extended to describe a thr
dimensional fracture transition as well. Studying elliptic
cuts, Sih and Liebowitz@13# found that a penny-shaped cu
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in a three-dimensional elastic medium subject to a unifo
isotropic tensionT relieves the most elastic energy for
given area of the cut. The energy to create a penny-sha
cut of radiusR, Epenny(R), is given by@13#

Epenny~R!52paR22
4~12s!R3T2

3m
. ~159!

The zero modes contribute in this case a factor 2pV/l3 —
2p coming from the distinct rotations of the cut, andV/l3

coming from the translations of the cut. Here we find t
imaginary part of the free energy to be

ImFpenny
simple~T!56

1

2b S 2p
V

l3D S 1

2bal2D 1/2
3expH 22bm2p3a2

3~12s!2T4 J , ~160!

and the asymptotic ratio of the high-order elastic coefficie
of the inverse bulk modulus

cn11

cn
→2S 3~12s!2

2bm2p3a2D 1/4S n4D
1/4

. ~161!

E. Vapor pressure

The approach we used to calculate the imaginary par
the free energy is a perturbative one. In a sense, not
prohibits us from considering cubic, quartic, etc. deviatio
from the saddle point energy. In fact, it is possible to deve
an analog of Feynman diagram technique~as in quantum
electrodynamics@29# or quantum field theory@8#! and calcu-
late the contribution to the imaginary part to any finite ord
It is important to realize that, even if we do this, the res
would still be incomplete: we would miss interesting a
important physics coming from nonperturbative effects. H
we discuss one such nonperturbative effect, namely, the ‘
por’’ pressure of a solid gas of bits fractured from the cra
surface. We find that including the vapor pressure, the es
tial singularity shifts fromT50 to T52Pvapor. Consider a
dilute gas of straight cuts of arbitrary length with an elliptic
opening@modev1 in Eq. ~59!# and a solid gas of fracture
bits from the crack surface. Following@9#, the partition func-
tion of the material with one cutZ1 under a uniform isotropic
tensionT is

Z15Z0S p
A

l2D E
0

`dl

l E
0

`dv1
l

3expH 2bS 2al 1
2pm

x11
v1
22

pTl

2
v1D J Zgas~ l ,v1!,

~162!

whereZgas(l ,v1) is the partition function of the gas of frac
tured bits inside the crack of areapl v1/2. It costs 2al to
fracture one bit of sizel3l from a crack step, so, in a
ideal gas approximation, the partition function of the gas
determined by
ed

s

of
ng
s
p

.
t

e
a-
k
n-

l

s

Zgas~ l ,v1!5 (
n50

`

exp~22balN!S pl v1
2l2 D N 1

N!

5expH pl v1
2l2 exp~22bal!J . ~163!

From Eqs.~162! and~163!, it follows that the partition func-
tion of the gas effectively increases the tensionT by the
vapor pressurePvapor, T→T1Pvapor, where

Pvapor5
1

bl2 exp~22bal!. ~164!

In particular, the essential singularity of the free energy sh
from zero tension to minus the ‘‘vapor’’ pressure. This sh
is clearly a nonperturbative effect. We were able to descr
it only by allowing topologically different excitations in th
system: a state of the elastic material with a bit complet
detached from the crack surfacemay notbe obtained by the
continuous deformation of the crack surface~surface
phonons! or the cut shape~curvy cuts!. At zero external pres-
sure, our material is in the gas~fractured! phase—not until
Pvapor is the solid stable.

VII. SUMMARY

In this paper we studied the stress-induced phase tra
tion of elastic materials under external stress: an ela
‘‘phase’’ under positive pressure goes to a fractur
‘‘phase’’ under tension. Under a stretching load the free
ergy develops an imaginary part with an essential singula
at vanishing tension. To calculate the essential singularity
the free energy including quadratic fluctuations, we det
mined the spectrum and normal modes of surface fluc
tions of a straight cut, and proved that under uniform isot
pic tension a curvy cut releases the same elastic energy~to
cubic order! as a straight one with the same end points. T
imaginary part of the free energy determines the asympt
behavior of the high-order nonlinear correction to the inve
bulk modulus@9#. We find that although the prefactor and th
renormalization of the surface tension are both regulariza
dependent~once we include the quadratic fluctuations!, the
asymptotic ratio of the high-order successive coefficients
the inverse bulk modulus apparently is a regularizatio
independent result.

Within our model, the asymptotic ratio is unchanged
the inclusion of nonlinear effects near the crack tips. W
generalized the simplified model~without the quadratic fluc-
tuations! to anisotropic uniform strain, and calculated th
asymptotic behavior of the high-order nonlinear coefficie
of the inverse Young’s modulus. We computed the ima
nary part of the free energy~and the corresponding diver
gence of the high-order coefficients of the inverse b
modulus! for fracture via void nucleation~which dominates
at small external pressures!: we argue that it may not occu
in brittle fracture and should be preempted by dislocat
motion in ductile fracture. We find that the simplified mod
applied to three-dimensional fracture predicts a (n/4)! diver-
gence of the nonlinear coefficients of the inverse b
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modulus.
Our results can be viewed as a straightforward extens

to the solid-gas sublimation point of Langer@19,4# and Fish-
er’s @3# theory of the essential singularities at the liquid-g
transition. Indeed, if we allow for vapor pressure in o
model, then our system will be in the gas phase atP50, as
noted in Sec. VI E. The essential singularity we calcul
shifts from P50 to the vapor pressure. If we measure t
nonlinear bulk modulus as an expansion about~say! atmo-
spheric pressure, it should converge, but the radius of c
si

A

n-

a

w
g-

-

ti-
e

or
n

s

e

n-

vergence would be bounded by the difference between
point of expansion and the vapor pressure.
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