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Statistical mechanics of cracks: Fluctuations, breakdown, and asymptotics of elastic theory
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We study a class of models for brittle fracture: elastic theory models that allow for cracks but not for plastic
flow. We show that these models exhibit, at all finite temperatures, a transition to fracture under applied load
similar to the first-order liquid-gas transition. We study this transition at low temperature for small tension.
Using the complex variable method in a two-dimensional elastic theory, we prove that the energy release in an
isotropically stretched material due to the creation of an arbitrary curvy cut is the same to cubic order as the
energy release for the straight cut with the same end points. We find the energy spectrum for crack shape
fluctuations and for crack surface phonons, under a uniform isotropic tension. For small uniform isotropic
tension in two dimensions, we calculate the essential singularity associated with fracturing the material in a
saddle point approximation including quadratic fluctuations. This singularity determines the lifetime of the
material(half-life for fracture, and also determines the asymptotic divergence of the high-order corrections to
the zero temperature elastic coefficients. We calculate the asymptotic ratio of the high-order elastic coefficients
of the inverse bulk modulus, and argue that the result is unchanged by nonlinearities—the ratio of the high-
order nonlinear terms are determined solely by the linear th¢8t063-651X97)02706-2

PACS numbg(s): 03.40.Dz, 46.30.Nz, 62.20.Dc, 62.20.Mk

[. INTRODUCTION our essential singularity implies that nonlinear elastic theory
is not convergent. Just as in quantum electrodynarif¢s
Early in the theory of fracture, Griffithil] used Inglis’ and other field theorieg3], for all finite temperatures, non-
stress analysi$2] of an elliptical flaw in a linear elastic linear elastic theory is an asymptotic expansion, with zero
material to predict the critical stress under which a crackradius of convergence at zero pressure. We will calculate the
irreversibly grows, causing the material to fracture. Con-high-order terms in the perturbation expansion governing the
versely, for a stressed solid the Griffith criterion determinegesponse of a system to infinitesimal tension. We find it in-
the crack nucleation barrier: if the material has microcrackgriguing that Hooke’s law is actually a first term in a diver-
due to disorder ofless commonlythermal fluctuations, how gent asymptotic series.
long does a microcrack have to be to cause failure under a The paper is organized as follows. In Sec. Il, using the
given load? In a sense, a solid under stretching is similar to aomplex variable method in a two-dimensional elastic
supercooled gas: the point of zero external stress plays thteeory, we calculate the energy release due to the equilib-
role of the liquid-gas condensation point. FishdB$theory  rium opening of an arbitrary curvy crack to quadratic order
of the condensation point predicts that the free energy of then kink angles. In Sec. 11l we find the spectrum of the bound-
system develops an essential singularity at the transitioary fluctuations(surface phononsof a straight cut under
point. In this paper we develop a framework for the field- uniform isotropic tension at infinity. Section 1V is devoted to
theoretical calculations of the thermodynamics of linear elasthe calculation of the imaginary part of the free energy. The
tic theory with crackgvoids) that naturally incorporates the calculation of the contribution of thermal fluctuations de-
guadratic fluctuations, and we calculate the analog of Fishpends on the “molecular structure” of our material at short
er's essential singularity. Following Langgf], the imagi- length scales — in field theory language, itégjularization-
nary part of the essential singularity can be used to determindependentWe calculate the imaginary part of the free en-
the lifetime to fracture. This is similar to a resonance prob-ergy both for theZ function and a particular lattice regular-
lem in quantum mechanics, where the imaginary part of thézation, and determine the temperature-dependent
energy determines the decay rate of the resonance. renormalization of the surface tension. Earlier we shoj/gd
There is much work on thermal fluctuations leading tothat the thermal instability of an elastic material with respect
failure at rather high tensions, near the threshold for instabilto fracture results in a nonanalytical behavior of the elastic
ity (the spinodal point[5]; there is also work on the role of constantge.g., the bulk modulysat zero applied stress. In
disorder in nucleating cracks at low tensiof§. We are  Sec. V we extend the calculatid®] of the high-order ex-
primarily interested in the thermal statistical mechanics ofpansion of the inverse bulk modulus by including quadratic
cracks undesmall tension. We must admit and emphasizefluctuations. We show there that the asymptotic ratio of the
that, practically speaking, there are no thermal crack fluctuahigh-order elastic coefficients, written in terms of the renor-
tions under small tension—our calculations are of no practimalized surface tension, isdependenbf regularization(for
cal significance. Why are we studying thermal cracks in thighe cases we studigdand we argue also that they are inde-
formal limit? First, for sufficiently small tension, the bulk of pendent of nonlinear effects near the crack tif¥he
the material(excluding regions near the crack tipgbeys asymptoticnonlinear coefficients depend only on thmear
linear elastic theory, thus making analytical analysis of theelastic moduli. In Sec. VI we perform the simplified calcu-
fracture thermodynamics tractable. Second, rén part of  lation (without fluctuation in several more general con-
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texts: anisotropic straitnonlinear Young's modulyscluster oot on=2(¢"(2)+ ¢'(2))
. . . . . . XX yy )
nucleation and dislocation nucleation, and three-dimensional
brittle fracture. We also discuss the effects of vapor Oyy— Oxxt 2l 03y =22 ¢" (2) + ' (X)), 2
pressure—nonperturbative effects when bits detach from the
crack. Finally, we summarize our results in Sec. VII. 2u(U+iv)=xd(2)—2¢' (2)— 4(2).
Il. ENERGY RELEASE OF “SLIGHTLY"” CURVY CUTS [The detailed discussion of the change of “variables”

(u,v)—(¢,¥) along with the derivation of Eqgl) and(2)

can be found if10].] The change of variable is especially
convenient for the investigation of the crack energetics. In
the new variables the energy release due to the equilibrium
?Fg&ening of the cut is given bjl3]

Elastic materials under a stretching load can relieve de
formation energy through the formation of cracks and voids
The famous Griffith criteria[1] for crack propagation is
based on the balance between the strain energy release
the increase in the material surface energy due to extendi
the crack: only long cracks release enough strain energy to =T
pay for the new surfaces. In the course of thermal fluctua- E elease= — 4—(1+X)Re[y1], 3)
tions a crack can originate from the successive breaking of K
atomic bonds. The line of the broken bonds need not bg V1
straight, and thus the contribution of curvy cuts must be in
cluded in the material free energy. As we explain in Sec. IV
we have to know only the energy release due toeteilib-

being the residue ofi(z) at infinity. The material
‘elastic constantsu and y can be expressed through its
'Young’s modulusY and Poisson ratie- as follows:

rium opening of a curvy cut; moreover, for the quadratic %

analysis of the essential singularity of the free energy it is m= 211 0)

sufficient to consider only a smalfjuadrati¢ deviation of (4
the broken bonds from the straight line configuration. In this 3o

section we calculate the energy release due to the equilib- X=—".

rium opening of a “slightly” curvy cut in a two- 1to

dimensional, isotropic, linear elastic infinite medium subject ) . .
to a uniform isotropic tensiof at infinity. (The given value fory corresponds to a plain stress in a

Perturbation methods based on the Muskhelishvilig] three-dimensional elastic theory; for a plain strain one should

methods for the straight cut have been used previously fofSEX=3—40) , _

the determination of the stress intensity factors of “slightly”  Before proceeding with the actual calculation of the en-

curvy or kinked crack§11,19. A particularly elegant ap- €'9Y release, we briefly discuss the standard lore concerning
proach was developed by Cotterell and Rit&]. They cal- the determination of the energy release for the infinite-size
culated the stress intensity factors of a slightly curvy crackSYStém- The proper determination is extremely important for

subject to a generic opening traction at the surface to the fir& COrTect description of the essential singularity in the free
order in the deviation of the cut from the straight line. Their €N€rgy, which arises only in the thermodynamic lifiit].

result, when applied in the case of a uniform isotropic tenFor a finite-size system the energy release is a well-defined

sion at infinity predicts that the energy release of a curvy cufiv@ntity that depends on the shape of the material boundary.
coincides with the energy release of the straight(with the 'I_'he situation bec_omes more subtle in case of an infinite elas-
same endpoinigo the first order in the deviatiofThis also 1€ Mmedium. In principle one can calculate the energy release
follows from the symmetry arguments that we present latePn@lyZing stress fields near the crack tips, and thus avoid the
in the section. In this section we will use their techniques to "€cessity of worrying about infinite-sized medium. This
obtain a stronger result: the energy release of a curvy cd?EthOO_" dev_eloped by Irwin in the 1.9505’ is known as the
opened by a uniform isotropic tension at infinity coincides toST€SS intensity approadis]. Alternatively, the energy re-
cubic order with the energy release of the straight cut with'e?lse can be calculated considering the system as a whole. In
the same end points. this approach, to compute the energy release one has to
An elastic state is completely defined once displacement valuate the work done by external forces and the change in

(u,v) are known everywhere, where the deformed positiont e energy of elastic deformation. The change in the energy
of a point (x,y) is {x+U(x,y),y+v(xy)}. Rather than con- of the elastic deformation involves the difference between
sidering these two functions, Muskhelishyitio] introduces two infinitely large quantities for an infinite material; the

. - P latter thus requires some sort of infinite-volume limit. Ex-
two complex functions¢(z) and (z) that in equilibrium ) ; .
should be the functions of only one complex variablg.e., tending Bueckner's analysgs6], Rice[17] showed that two

they do not depend). Moreover, in our caséa uniform methods give identic.al results if one careful[y .accc')untg, for
isotropic tension at infinity ¢(z) decomposes as the boundary relaxation bgfore taking the |nf|n|te-5|ze_ limit.
He presented the expression for the energy release in terms
D (2)=3Tz+ po(2). ) of stresses and strains local to the crack. The latter does not
“feel” the shape of the boundary in the infinite-volume
The functions¢y(z) and ¢(z) are holomorphic in the com- limit. In fact, expression3) strongly relies on this conclu-
plex z plane including infinity but excluding the cut contour. sion.
This description associates the components of stress To illustrate the correspondence between the energy re-
(0xx:Tyy,0yy) and displacementu(v) to (¢,4) by the fol-  lease of a curvy cut and the straight one with the same end
lowing relations: points, let us consider a rare example where it is possible to
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FIG. 2. The two-kink cutABCD can be considered asd&for-

FIG. 1. The “smile”-like cut ABC and the straight cuAC mationof a straight CUAD.

result in the same energy release to cubic ordet.in . . .
o kink angles, e.g., for tha@-kink regularization, the energy

find an exact analytical solution. Suppose a material with deleaseE,({ai}) for a curvy cut with a fixed separatiofy,
“smile” cut—an arc of a circleABC—of total arc length ~Petween the end points is approximated as
/ (Fig. 1) is subject to a uniform isotropic stretchifig at

n n
infinity. Expanding the exact answer [ii0] aboutz=, we
find P ’ il - En({ai})ZE(°)+§l Ei(l)“i+;1 jzl Ei(jz)aiaj

n

B T/? 8sirf6l2 1
Yaecd2)= ~ 5 23 com) T Ol 2

n n n
, (5 +Z‘1 121 mZ:l ElS aijan+O(e), (10

which, according to Eqe3), gives the energy releastac where E? is the energy release for a straight cut of length

T2 8 sir /2 /s and the coefficient&(”, E?), andE(7) depend only on
EABC=W(1+X) F(3—cod)’ (6) the positions of the kinks along the cut. We claim that all

coefficients up to cubic order are zero, and thus the energy of
a curvy cut and the straight one with the same end points can

On the other hand, for a straight clAC of length differ only atO(ai"').

(/16)sing, the holomorphic function ¢¥5c(z) has an

asymptotic behaviof10] That EM and ES) (in fact, all terms odd in the kink

angleg are zero follows from a symmetry argument: cuts
T/7? sirf 1 (having the same number of segments with the correspond-

UaclD)=— 5, 7 (;) (1) ing segments being of the same lengthith kink angles
{a;} and {—«;}, respectively, are mirror images of each
resulting in the energy releag,c, other with respect to the first link. The boundary condition

for our problem(a uniform tension at infinityis reflection

£ 7rT2/2(1+ )sin20 @ invariant, so
ACT a5 X) 2
Sou ’ E,({ah) =En({—ar}), a1

For small # we find, from Egs.(6) and (8), the advertised
result: the energy release @&BC coincides with that of Which requires that all energy release terms odd in the kink
AC to cubic order ing, but not to quartic order, angles vanish. To calculaﬁ(jz) for a given pair of indexes,
we can put all kink angles to zero except fer and «o;,
reducing then-kink problem to a two-kink one. From now
on we will consider only the two-kink problem to quadratic
(9)  order in the kink angles.
T2/? 2 o* We choose the coordinate systefY in the complexz
EAC:T(]-_"X)( I=3+357 0(06)) : plane in such a way that the ends of the two-kink cut are on
# the X axis, symmetric with respect to thé axis (Fig. 2.
We now proceed with the general proof. First, an arbitraryASSUming a uniform isotropic tensidnat infinity we rewrite
cut is approximated by a finite number of line segmentsEd- (3, explicitly indicating the dependence of the energy
parametrized by kink angles,—the angles between con- '€lease on the kink angles,
secutive kinks. The exact shape of the cut is then restored as
the length of each link goes to zefas their number goes to
infinity). The energy release is evaluated to cubic order in the

7 T?/?

EABC:W(]-"—X)

2 7 4

1 70 o 6°
BRI ML

7T
Ez(alyaz):_E(1+X)Re[y1(011,012)], (12
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wherey;(aq,a,) is 1/z coefficient in the expansion of the
function /(z) at infinity. As discussed earlier in the section,
(2) is a holomorphic function in the complexplane in-
cluding infinity (the extended complex planbut excluding
the two-kink cut. The other functiogh(z) that is necessary
for the specification of the equilibrium elastic state satisfies
Eqg. (1), with ¢o(z) holomorphic in the same region as
(2). The analytical functiong(z) and(z) must provide a
stress-free cut boundary, which, followifd0], can be ex-
pressed as

if (¢, 0)=[d(2)+2¢'(2)+$(2)]|5=0, (13

wheref=F,+iF, is the complex analog of the force acting
on the portion of the cut boundary between poidisand
X.

It is important to note that any two pairs of functions
(¢5(2),¥*(2)) and (¢3(z),4?(2)) that are holomorphic in
the extendedz plane excluding the same curvy cut, and  FIG. 3. Functionspg(z) andy®(z) holomorphic in the complex
which provide the stress-free cut boundarie@t@a?’), Eq. z plane excluding the straight cAD (a), can be “made” holomor-

(13), can differ only byO(a3) everywhere: phic in the complex plane excluding the two-kink clkBCD (d).
5p(2)= p3(2)— p3(2)=0(a®), the straight cutAD, Eq. (48. Removing the region
(14  ABCDA Eq. (4b), we make it holomorphic in the complex
S(2)= M (2) — YA(2)=0(ad). plane excludingABCDA Now we analytically continue

¢5(2) from the link AD, Eg. (40), into the removed region

This follows explicitly from Cauchy’s theorem, but also fol- [the continuation is possible explicitly using E@.5)]. The
lows from the elastic theory. Each paif¢s(z)  obtained function becomes holomorphic everywhere in the
+T22,4(2)) or (¢3(2)+Tz2,47(2)) defines the equilib- complex z plane excluding the two-kink cuoBCD, Eq.
rium elastic state with stresses of ord®fa®) along the cut  (4d), moreover the original function and the one obtained
boundary and uniform isotropic stretchiffgat infinity. So,  through the analytical continuation coincide outside
(8¢(2),6¥(z)) corresponds to the equilibrium state with the ABCDA
specified stresses of ord®( «®) along the cut boundary and The idea of constructing the holomorphic functions
zero tension at infinity. Thus Eq14) follows, because the ¢y(z) and (z) is simple: we start with the functions
response to this force within linear elastic theory must begi(z) and¢°(z) and calculate to quadratic order the stresses
linear. The above argument guarantees that once we finglong the two-kink cut boundawB CD under the analytical
$o(2) and (z) that satisfy the discussed constraints tocontinuation as described by Fig. 3. The stresses along the
O(®), we can use them to calculate the energy release afurvy cut boundaryFig. 4) are then compensated for up to
the curvy cut to quadratic order. guadratic order in the kink angles by introducing counter

Let functions¢®(z) and¢*(z) define the equilibrium elas- forces along the originalstraigh} cut, leading to corrected
tic state of a material with a straight céD subject to a functions 6¢°(z) and 6y°(z), where ¢(2)=¢(2)
uniform tension T at infinity. ¢5(2)=¢%(2)—TZ2 and +5¢°(2)+0(a®) and ¥ (2) = ¢5(2) + 4°(z) + O(a®). For
#*(z) should then be holomorphic in the extended complexhe calculation of the energy releage?), we need the real
z plane excluding the straight cut, and should provide stresgpart of the residue ofy(z) at infinity: we will show that the

free boundaries alongD. Muskhelishvili finds[10] residue ofdy°(z) at infinity is zero and thus the residues of
< ¥(z) and¢°(z) atz=<0 are the same—which means that the
dé*(z) T z energy release for the curvy cABCD is the same as that
dz 2 m 15 for the straight cuAD.
dys(z) T 2/

0z 8 (22— /22— A

[To obtain¢%(z) and ¢5(z), we integrate Eq(15); the arbi-
trariness in the integration constants reflect the ambiguity ir
the displacements up to a rigid motion of the material as &
whole] Note thatpg(z) and#(z) can be “made” holomor-
phic everywhere in the complexplane excluding the two-
kink cut ABCD, and thus can serve as a good starting point
for the construction okpo(z) and (z). The process of an FIG. 4. The stress free boundary of a two-kiABCD cut (b)
analytical continuation is demonstrated by Fig.¢8(z) [or  can be mimicked by applying the tangential force to the previously
equivalentlyy>(z)] is holomorphic in thez plane excluding unstresseda) straight cut boundanAD.
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Let us assume that point/ and X are on the upper same to quadratic order in the kink angles as the energy
boundary of the link AB. From Fig. 2, z=t release of the straight cut of lengtfy,. The latter one is
+i,8(t+/p/2)+0(a3), wherete AB’ and B8=(1—k;)a;  given by the second formula in E¢Q) with §=0 (it also

+(1—ky) ay+0O(a®). Using Eq.(13), we find coincides with Griffitn’s resujt
(b =TT+t T+ 450D 11X +i + /02 7T/
(65,95 =[$5(1) T+ 150 T+ (1) TI|§,+i Bt +//2) VBT 19
(B0 + 0T~ 0T — g0 I g
B2(t+/[2)? The natural variables to describe the curvy cut are its total
P (4%t length/ and its curvaturd(x), xe[0,/]. In what follows
2 we express Eq19) in these variables, and find the normal
Sy e 3 modes of the curvature that diagonalize the energy release.
241"+ YO+ O(e’) For the two-kink cutABCD (Fig. 2 of total length/,
=2B2(t+/,12)%¢%(1)" [+ O(a?), (16)  one can find
wheret runs alongAB’; the + superscript means that the / _/<1 X1(/—=Xy1) 2 X1(/ = X3)
s Cp=C | LT 7 T 2 a2
values of ¢g(t) and (t) should be taken at the upper 2/ /
boundary of the straight cut. To obtain the second expression ,
in Eq. (16), one can plug in the explicit forrfl5), or—more _ Xo(/ — %) 02| +0(a?) (20)
elegantly—note that fare AB’, ¢>(t) is pure imaginary and 277 2 ’
¥3(2)' = —z¢%(2)". Either way, it follows that the functions ) ) N
8¢(z) and sy°(z) satisfy wherex; andx, parametrize the kink positions: the length of
the link AB is assumed to b&; and the length of the seg-
i f=[84°(t) T +t8p°(t)’ T+ 5¢°(t)+]|\>/(v mentABC equalsx,. Similarly, for then-kink cut of total
length / with the kink angles{«;} parametrized by their
= _252(t+/p/2)2¢5(t)”+|\>/‘v_ (17)  distance{x;} from the cut end,
This is the force we need to add along the straight cut just n XX min(X; ,X;)
below segmenAB to cancel the stress along the curvy cut. /pz/( 1- %'2 ajaj| — —21+ —J +0(ad).
Simi ) i=1 / /7
imilar expressions can be found for the forces needed be-

low BC andCD. To find §¢°(z) and 6¢°(z) we have to (2D

solve the elqsticity problem for.the matgrial with the StraightExpressing the kink angles through the local curvature of the
cut AD, subject to these_ applied forcésf along the cut curve, ;= k(x;)Ax; /\, we find the continuous limit of Eq.
boundary. Fortunately, this problem allows a closed analytl-(21)

cal solution [10]. Expanding the exact expression for

S¥°(2) in [10], we find ‘ 7 (7dxdy
p . /"'p=/'(1—% fo fo —z KOOMOxy)k(y) | +O(k(%)°),
c __"p ; -
5¢/f(z)——47ﬂz ﬁRe[mf(x(a))]daJrO 22)’ (19 (22
with

where the integration is along the unit circjein the com-
plex plane, andiéf is a function of a variable point Xy —min(x,y)
X(0)=/p(c+1la)/4 along the straight cut bounda#D. Mxy)=-—Z+—— (23)

Notice from Eq.(17) thati &f is pure imaginary evaluated on

the upper boundary of the linkB: in this caselt|</x/2,  and the scala is introduced to make the curvature dimen-
and so the argument of the square root in B is nega-  sjonless § can be associated with the ultraviolet cutoff of
tive, resulting in pure imaginarg®(t)’, thus $(t)" is also  the theory—roughly the interatomic distapc&ubstituting

pure imaginary. In fact, as it can be checked explicitly,eq. (23) into Eq. (19, we find the energy release

Re[i 6f]=0 for arbitraryW and X along the cut boundary. g(/ k(x))=E(/,) of the curvy cut in its intrinsic variables
So we conclude from Ed18) that the residue 06y°(z) at
infinity is zero, and thus the energy release for the curvy cut e

ABCD is the same as for the straight oAD. The underly- E(/ k(x))= W(PFX)
ing physical reason for this seemingly remarkable coinci-

dence is that to imitate the stress free curvy cut to quadratic 7 (7dxdy

order in the kink angles we have to apply only tangential X 1= fo fo Tk(x)M(x,y)k(y)

force along the straight cutpure imaginaryi 5f means

F,=0), which does not work because a straight cut under a +0(k(x)3). (24
uniform isotropic tension at infinity opens up but does not

shrink[10]. To find the normal modes of the curvature we have to find

We find that the energy releag&g /) of the curvy cut the eigenvalues and eigenvectors of the operst(x,y). If
with projected distance’, between the end points is the k,(X) is an eigenvector o (x,y) with eigenvaluer,,, then
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d 20(X)=U(x,0+)—u(x,0-) f —/12,/12
Aoka0 = [ MOy ko) (25) GLIZUOOT)Zu007) - for el o8

From Eg. (23), M(0,y)=0 and M(/,y)=0 for arbitrary and

ye[0/7], so from Eq.25) the eigenvectors dfl (x,y) must
be zero atx=0 andx=/" k,(0)=k,(/)=0. An arbitrary
function k,(x) with this property is given by the Fourier
series

2g,(x)=v(x,0+)—v(x.0-) for xe[-/12,/12]
(29

may be nonzero. It is clear that the arbitrary stdtean be

% 12 iy decomposed into a superposition of two states
Kn(X)= 21 cm(7) sin——, (26)  Ug=(uq,vg) ath_]c:(uc,vc): Uy is the equilibrium elastic
m= : state that maximizes the energy release for given displace-
ment discontinuity §¢,9,) at the cut boundarie&8) and
(29) and tensionT at infinity, and U, is given by
(Uc,ve)=(U—Ug,v—vg), and is a continuous displacement
field everywhere. The statd describing the actual fluctua-
tion of the elastic material should provide zero traction at the
cut boundaries. This is not, however, a requirement for states
Uy and U, separately. In fact, for the statd, to be an

where the overall constarf2\// is introduced to normalize
the Fourier modes with the integration measdsé\ over
xe[0,/]. One can explicitly check from Ed25) that each
Fourier modey2\//'sin(mmx/’) is in fact an eigenvector of
M(x,y) with the eigenvaluex,=//(mw?m?\). In terms of
the amplitudes of the normal modés,}, Eq. (24) is rewrit-

ten as
equilibrium one one needs to apply forces along the cut
T2 o y boundaries to insure the displacement discontinuity
E(/-{Cn}):?(lﬂ) 1- >, — zxcﬁ +0(cd). (9x,9y). For any physical fluctuatiorJ (satisfying the
e n=1 7N traction-free boundary condition at the uhe correspond-

(27) ing continuous statdajC will also have forces at the seam
where the cut is stitched together: these forces from above

Equation(27) is the main result of the section: we have cal- and below are equal and opposite at each point of the

culated the energy release of an arbitrary curvy cut in its(former) cut

|knt;|n3|)((: v%n;blef—the dtrottial I?:jlg:bi{;kaxnd trr:g fcu;vdattLrJ]re The energy release is the sum of the work done by the
(x), xe[0/]—to quadratic orde ( ). a ' fou € external forces and the work done by the internal forces. We
normal modes of the curvature that diagonalize the energy” : -
release. define the energy releage for the elastic staté) with re-
Finally, we mention that the measure in the kink anglespect to the equilibrium state of the materidy=(uo,vo)
space is CartesianH;da;—[and thus the functional mea- Without the cut under the same loading at infinity, as a limit
sureDk(x)=D a(x) is Cartesiah so the measure in the vec- Of this difference for finit.e size samples with bounddry
tor space of the amplitudes of the normal mofieg is also ~ and enclosed ared. We find
Cartesian—H,_,dc,, because the Fourier transformation
{k(x)}—{cy} is orthonormal. This will be important in Sec. _ jg PR SR S ;j J 0.0 o
IV, where we will be integrating over crack shapes. E ran (U=Ugd/+3 A(U'Je” 7ijei)dA,
(30)
Ill. SURFACE PHONONS o o . B
_ _ _ . whereoyj; andej; are the stresses and strains of the equilib-
In the previous sections we extensively discussed the ca}-

. o “afum elastic state of the uncracked matelihy; ojj andg;;
culation of the energy release due to the equilibrium Opening e the stresses and strains of the elastic state of material

of a cut in an elastic material. Since our goal is to deal with ith the straight cut and displ tfiddd andn "
cracks as thermal fluctuations, we must also deal with thdith the straight cut and displacement figld andn is a uni

more traditional elastic fluctuations—phonons or sound. W ormal pqintir]g outwa}rds from the rggularization boundary
find here that the bulk fluctuations decouple from the newt b- The first integral in Eq(30) describes the work of the
surface phonon modes introduced by the cut. We discuss tff\é(temal traction and the second one accounts for the change
quadratic fluctuations for linear elastic material with a '™ the elastic deformation energy. We rewrite the energy re-
straight cut of length” subject to a uniform isotropic tension lease(30) making use of the decompositidh=Uy+ U, to

T at infinity; more specifically, we calculate the energy re-obtain

lease for the material with an arbitrary opening of the straight
cut, and we find collective coordinates that diagonalize the
change in the energy.

E= jg Tﬁ-<Ug—Oo>d/+%J f (o%el—ofed)dA
r A
An elastic state of the fluctuating material can be defined °

through the specification of its displacemelﬁ;(u,v) at _;J f oS e dA+ % Tn-U.d/

every point &,y). For the material with a cut, the fields 2] a7 Ty ¢

u(x,y) and v(x,y) can in principle have a discontinuity

along the cut: assuming that the cut is an interval _1 (o9€® +oCed)dA (31
(x.y)=([—712,/12],0), 2) Ja e T
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The first two integrals in E¢(31) give the energy release for
the elastic statdJ,. According to our decomposition this
energy release is maximum for given(x) andg,(x), and
thus can not increase linearly by tuniﬁlg. The latter is true
only if the last two integrals on the right-hand side of

Eq. (3)—linear in Gc—cancel each other. This decoupling
can be verified explicitly: integrating by parts and using the

fact thatljg is an equilibrium state, we find

3@ Tﬁ-ocd/—éff(ageﬁ+aﬁeﬁ)dA=—%39 Fo-Us
ry A ry
(32

where the integration on the right-hand side of E2p) is

over the cut contour. The forde, applied at the cut bound-

ary of the statedJ ; must be antisymmetrito have an anti-
symmetric displacement discontinuitywhile by definition,
the displacements at the cut for the sthltgare symmetric.
The latter means that the right-hand side of 8§) vanishes
identically. From Eqgs(31) and(32),

E= fﬁ Tn-(Ug—Ug)d/
I'p

3] | ot~

A

-3 [ [ oneqan
A

O'%eigj)dA

(33

the energy factors, and the last term representing the continu-
ous degrees of freedom, do not “feel” the presence of the

FIG. 5. The determination of the holomorphic functions describ-
ing the equilibrium elastic state of the material with a straight cut is
simplified in the conformal plané, where the unit circley corre-
sponds to cut boundary,, in the originalz plane.

In the spirit of Sec. Il, the equilibrium elastic stat}g can

be described by the analytical functionsz) and (z);
$o(2)= ¢p(2) —T2/2 and (z) are holomorphic in the ex-
tended complex plane excluding the straight cut, and are
constrained to provide the displacement discontinuity
(9x,9y) - In[13] the integral in Eq(36) has been identified in
Muskhelishvili's variables with Eq(3). The energy release
Eq is then smaller than the one given by E8) by JE,

T g
Eg=—m(1+x)R€[y1]—5E, (38)
wherey{ is the 1¢ coefficient in the expansion af(z) at
infinity.

To determine the functiongy(z) and (z) we confor-
mally map the complex plane with the cut to the outside of
the unit circley (Fig. 5,

/ 1)
i+,

2=0(0)= 7| ¢+ (39

cut and thus will have exactly the same spectrum as that of

the uncracked material.

so that the unit circle in thé plane is mapped to the straight

This decoupling is more subtle than we are pretendingut boundant’, in the original plane]’s=w (7).
here, and depends upon how one describes the continuous The elasticity problem is reformulated in the conformal
medium on a microscopic scale—the regularization. We willPlane as follows: we have to find analytical functions

discuss this in Sec. IV, where we will show that decoupling®g(£) = ¢(w({))

is perfect in the “split atom” lattice regularization.

and  Jy()=w(w({)), such that
Dgo({) = dg({) — 7 {14 andyy({) are holomorphic in the ex-

From Clapeyron’s theorefl8], the elastic energy of the tended complex plane outside the unit circle and give the

uncracked material is given by

%f J af}eﬂdA=%39 Tn-Uyd/. (34)

The elastic energy of the material with the cut is determine

by

%ffaﬁe?jdA:%ff Tn-Ugd/+ 3 jg Fn-Ugd/. (39
A Ty Iy

Following Egs.(33)—(35), we find the energy releadsy,

fﬁ Tn-(Ug—Ug)d/ - SE, (36)

Ty

where

(37

maximum energy release with displacement discontinuity
(9x,9y) at the cut boundary. We introduce

g(o)=ugtivgl,, (40

here o=exp(«a), a<[0,27), is a parametrization of the
nit circle y. Since o and 1ot represent opposite points
across the cut, Eq$28) and (29) require

g(0)—g(Llo)=2[gy(w(0))+igy(w(0))],
ae[0,m). (42)

It is important to note that the equilibrium elastic state that
maximizes the energy release for given displacement discon-
tinuity (gx,9y) is unique; on the other hand, E@1) deter-
mines only the asymmetric modegY"(o) of the crack
opening displacement for this state,

29*M o) =[ug(0) +ivg(o)]—[ug(1lo) +ivg(1lo)]
=2[gy(w(0))+igy(w(0a))]. (42
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The symmetric modeg®™( o) L ) )
SE=3Re fﬁ ((Tpp—lapo)(vp—l—Iv9)|w’(0)||d(r|
29 0)=[ug(0) +ivg(o)]+[ug(lo) +ivg(1lo)], (43 Y

w'(0)

left unconstrained by Eq(41), should then be relaxed to :lRefﬁ (o, —i0,,)
provide the maximum energy release for givgf®™ o). ? y e
Thus, to calculate the energy reledsg of the elastic state

Ug we first find the energy release(g)=E(g*¥™g¥™  whereo,,—io,, is given by Eq.(47) with {—o (p—1).
for the equilibrium state with an arbitrary displacement alongFrom Egs.(38) and (49) we find the energy releadg(g),
the cut boundang(c), and then maximize the result with
respect tag®¥™

do
o), (49

.
E(g)=— 7 (1+X)Rdy1(0)]
Ey=maxE(g™ g™). (44) H

gsym

2 . '(0)
In what follows we will use,(£) andy,({) to describe the zRe ﬁ(a”” 1Tl (U) - 0
equilibrium elastic state with an arbitrary displacement
g(o) along the cut boundary and tensidrat infinity. [The  \yhere y.(g) is the 1t coefficient in the expansion of
energy release for arbitraiy( o) is still given by Eqs.(37) Y (0 (2)) at z=rc.
and (38).] Making the change of variables—w({) in Eq. The equilibrium elastic problem for material with the
(2) and putting{= o, we obtain a constraint os,({) and  straight cut allows a closed analytical solution for the arbi-
#,({) that guarantees the displacements alongo be  trary specified displacemeg{o) along the unit circle in the
9(a), conformal plane/. Using the fact thatp, (£) andy,(¢) are

(o) holomorphic functions outside the unit circle that satisfy Eq.
xb (o) — T_’_qgg(g) —y(0)=2ug(0). (45) (45), Muskhelishvili finds[10]
w (O

T/§ 2/.L 1 g(O')d0'+T/

Once the solutiong,, ;) of the elasticity problem is found, b )= = ,

we can compute correctiaid7) to the energy release. Intro- X 2mi y 0—¢ 8x{

ducing the polar coordmateep (6) (F|g 5 in the complex

{ plane, Fh—F p+F 6 and Ug v p+090 and, using m glo)do T/ [x 2¢

d/=|w’ (0')||d0'| we find ’ v ()= =7 +?(z—ﬁ) (51)
Y

SE=1% é (FPUP+F900)|(D/(O')||dO'|,
y

(46) s

1+ T/\ u [ g(o)do
e Ko

~1 § (00,4 00|’ (0)]]do], _ _ _
Y Assuming thag(o) is smooth, we represent it by a conver-

. . %ent Fourier series
where in the second equality we express the force throug
the stress tensor componenks;=o,, and Fy=0,,. The _E ) n
stress tensor components, and o, are given in terms of 9(o)= <~ (agtiby)a™.
the ¢,({) and #,({) functions that, as we already men-
tioned, completely determine the equilibrium elastic stateUsing representatio(62) for g(o) we find, from Eq.(50),

+ oo

(52

Muskhelishvili finds[10] the energy releask,
¢g(§) d’é(g) _ éz w({) " 7TT/(1+)() +o
Opp—10p6= (§)+w,(§) pr/(g) ( ¢§(§) E(g)zT(a_ﬁXal)—Zw,ungln aﬁ+bﬁ
w({)w"({) , aZ,+b%.\ T2 3(1+y) 1
W%@H%(é)}- (47) + " 128 X—2+; . (53

Noting that the transformation of the displacements along the'he computations are tedious, but straightforward: first we
unit circle in the Cartesian coordinatesug(vg),  substitute Eq(52) into Eq. (51) to find the solution of the

g=Ug+ivg, to the polar coordinates(,,v ), is [10] elasticity problem in terms of the Fourier amplitudes
- {a,,b,}, then we calculate the stress tensor components at
1o o'(0) o'(0) the unit circle using Eq47), and, finally, plugging the result
vptivg= o o' (o) (Ug+ 'vg)_ oo’ |g(‘7) @8 into Eq.(50) we obtain Eq(53). The next step is to relax the

symmetric modes in the crack opening displacement given
we conclude, from Eq46), that by g(o). From Eqs.(52) and(40) we find
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+ oo

ugzngl (a,+a_p)cona+(b_,—b,)sima,

(54)
+ e
vg=2 (b,+b_pcomna+(a,—a_,)sina,
n=1
which, with the change of variables
up,=b_p—bp,
vp=a,—a_n, (55
U,=b,+b_,,
vp=apta_,,
is rewritten as
+ oo
Ug= D, UnCofNa+U,sima,
=1
" (56)

+ oo

vg= 21 TU,cona+uv,sina.
n:

It is clear now that the asymmetric modes of the crack open-

ing displacement are described by, ,v,}, while the sym-
metric ones are specified Ky, ,v,,}. [Recall that points pa-
rametrized byo and 16 (or equivalentlye and —«a) are
opposite from one another across the kcilithe amplitudes
{u,,vn} are uniquely determined for the giverg,(,gy).
From Egs.(42) and (56),

©

9u(/ cose/2)+ig,(/ cosw/2)= D, (uy+iv,)sima,
n=1
(57

where a €[0,77]. Using the transformation inverse to Eq.
(55), we can express the energy releds8) in terms of
{u,,vn,Upn,v,}. The obtained expression is maximum for

~_x71
Tty

- 1-x

Unzvnm, n#1l, (58)

1-xy T/(x—-1
7, X, (x—1)

:Ull—i-)( 8u '

and gives the energy releakg,

T/ 27 = s 2
Eg—Tvl— mnzl n(up+vp). (59

Finally, the maximum of Eq(59) is achieved for

U=, (60)
vp¥=0, n#1,
e 7T/ (1+ )
8u
and
2 p2
Erae mT é,z(:ﬂ()’ 61

which, as one might expect, corresponds to the equilibrium
opening of the cu{10] and the energy release associated
with this opening, Eq.(19). Expanding Eq.(59) about
ful® o™ Luy ot —{ul®+u, o+ v,), we find

+ o0

aT?2/%(1+x) 27w s
Eo="32, —1+Xn§1n(un+un). (62)

Expression(62) is the desired result: we find that the crack
opening displacementpecified on the unit circle in the
conformal plang

X
Vp——CON
1+yx

{uvy=

: x—1
+ unS|ma,unmcosna

+v nsinna] (63

imposed on the saddle point cut opening

{umaxXyman = { O,%/]:’_X)Sina] (64

diagonalize the energy release, and thus are the normal
modes; with the excitation of theth normal mode with the
amplitude {u,,v,} the energy release decreases by
2aun(uz+v2)/(1+).

Although Eq.(59) has been derived for the material under
uniform isotropic stretching at infinity, it can be reinterpreted
to describe the minimum increase in the enertdy of the
material under a uniform isotropic compressiressurg
P at infinity, due to the opening of the straight cut with a
specified displacement discontinuity along its boundary. For
the displacement discontinuity given by E&7), we find,
similar to Eq.(59),

P/ 2T s 2
AE—Tvl+ngl n(uz+v?). (65)

One can use the same arguments that lead to(Eg).to
show that the crack opening normal modé8) decouple
from all continuous mode&hat are present in the uncracked
materia) and thus leave their spectrum unchanged. The
saddle point is, however, unphysical in this case: as follows
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from Eq.(64) [T in Eq. (64) should be replaced withk P], it
corresponds to a configuration where the material overlaps ZF% exp(— BE), (70
itself.

where the summation is over all energy states of the material
IV. IMAGINARY PART OF THE PARTITION FUNCTION with a single cut. The calculation of the imaginary part of the

Elastic materials at finite temperature undergo a phasBartition function is dominated by a saddle point, that in our
transition to fracture at zero applied stress, similar to the"@Se is a straight cut of lengt.. The straight cut is the
first-order phase transition in spin systems below the criticapaddle point, because it gains the most elastic relaxation en-
temperature at zero magnetic field. The free energy of afrdy for a given number of broken bon@ge explicitly show
elastic material under a stretching load develops an imagil" Sec. Il that curving a cut reduces the energy reledser
nary part which determines the material lifetime with respecf?oW We neglect all fluctuations of the critical dropigte cut
to fracture. The imaginary part of the free energy has aPf length /) except for its uniform contraction or
essential singularity at zero applied stress. In this section wexpansion—fluctuations in the length of the straight cut. In-
calculate this singularity at low temperatures in a saddidroducing the deviatiod/ in the cut length from the critical

point approximation, including quadratic fluctuations. length/c, A/'=/~=/, we find, from Eq.(68),
Consider an infinite two-dimensional elastic material sub-

ject to a uniform isotropic stretchinf at infinity. Creation of , A2

a straight cut of length” will increase the energy by@/, E=a/c—a /o (72)

wherea is the surface tensiofihe energy per unit length of

edge, with a factor of 2 because of the two free surfaces. OnThe fact that this degree of freedom has a negative eigen-
the other hand, the cut will open up because of elastic relaxzalue means that direct computation of the partition function
ation. Using Eq(61) for the energy release, we find the total yjelds a divergent result. A similar problem for the three-
energyE(/) of the straight cut in equilibrium under stretch- dimensional Ising model was solved by Lan§g]: one has

ing tensionT, to compute the partition function in a stable stée—T
(compressiop) and then do an analytical continuation in pa-

: AT (14 ) rameter s h fi he f devel-
E(/)=2a/— _ (66) space to the state of interest. The free energy deve
32u ops an imaginary part in the unstable state, related to the
) decay rate for fracturf4]: the situation is similar to that of
Introducing barrier tunneling in quantum mechani¢20], where the
imaginary part in the energy gives the decay rate of a reso-
/o= 322,m (67) nance. We have explicitly implemented this prescription for
C aTi(1+x)’ the simplified calculation of the imaginary part of the free
) energy[9]: for the elastic material under a uniform isotropic
we can rewrite the energy of the crack as compression at infinity, allowing for the nucleation of
o straight cuts of an arbitrary length with an arbitrary elliptical
E(/)=2a/—a—. (68) ppening[modevl in Eq.'(65);|, we calculated the free energy
/¢ in a dilute gas approximation. We carefully performed the

o ) o analytical continuation to the metastable state describing the
It follows that cracks with/">/ will grow, giving rise 0 glastic material under the uniform isotropic stretchifgat

the fracture of the material, while those W|m</c will |nf|n|ty’ and found the imaginary part of the free energy,
heal—a result first obtained by Griffitil]. At finite tem-

perature a crack of any size can appear as a thermal fluctua- . 2 A —328ua?
tion, which means that for arbitrary small stretchifigthe ImFSmPI T) = BITNZ WF) exp[ T D)
true ground state of the system is fractured into pieces, and B T (x+1)

so the free energy of the material cannot be analytical at ] ] ) )
T=0. Because the enerd§(/.)=a/, grows as II? as whereA is the area of the material arndis the ultraviolet

T—0, interactions between thermally nucleated cracks argutoff of the theory[The version of Eq(72), as derived in
unimportant at small and low temperature@llowing us to 9], overcounts the contribution from zero-restoring-force

. (72)

use the “dilute gas approximation” modes (2rA/\?) by factor 2. Because cracks tilted Byand
The thermodynamic properties of a macroscopic systerﬁT“L 0 are identical, the proper contribution from rotations
can be obtained from its partition functidh must ber, rather than 2r.]

The alternative to this analytical continuation approach is
* to deform the integration contour over the amplitude of the
Z=>, > exp(—BEn), (69)  unstable(negative eigenvaljemode from the saddle point
N=0 n A/=0 along the path of the steepest desddr§]. More
precisely, we regularize the direct expression for the partition

where the summatioN is over all possible numbers of par- ¢, tion

ticles (cracks in our cage and the summation is over all

states of the system witN cracks. A\ (= dA/ A2
To begin with, let us consider the partition function of the 7z, = Zo( 777) f _'exp{ — 3( al ¢— af)] (73

material with one cuf,, NS -z A z

C
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(which diverges at big/) by bending theA/ integration  which cures the discrepancy between EG&) and (72).

contour from the saddle into the complex plane: Although the analytical continuation method is theoretically
more appealing, the calculation of the imaginary part through

A\ (o dA/ ) A/? the deformation of the integration contour of the unstable
L1=Zo| T3 f_/CTeX —B “/C_“Tc mode is more convenient once we include the quadratic fluc-

tuations. It is clear that both metho@soperly implemented
A . [*Fi=dA/ A/? must give the same results.
WF) exp(—Basc) fo N X IBC“/_/C : We have already emphasized that the above calculation
ignores the quadratic fluctuations about the saddle fgeint
(74)  cept for the uniform contraction or extension of the critical
dropled, which may change the prefactor in expressi@8)
In Egs. (73) and (74) the factor @A/\?) comes from the for the imaginary part of the free energy, and may renormal-
zero-restoring-force modes for rotating and translating th§ze the surface tensiom. There are three kinds of quadratic
cut, andZ, is the partition function for the uncracked mate- f|,ctuations we have to deal witH) Curvy cuts—changes in
rial (unity for the present simplified calculatipThe second  the shape of the tear in the material: deviations of the broken
integral in Eq.(74) generates the imaginary part of the par-ponds from a straight-line configuration(ll) Surface
tition function phonons—fluctuations of the free surface of the crack about
2 its equilibrium opening(lll) Bulk phonons—fluctuations of
(79 the elastic medium that are continuous at the cut boundary.
Just as for the surface phonon coordinateabove, we inte-
grate over these fluctuations about the saddle point critical
with the * sign corresponding to the analytical continuationcrack, keeping terms in the energy difference to quadratic
to either side of the branch cut of the partition functipiVe  order. We trace over all shapes and deformations in three
showed in[9] that the partition function, at least for the steps: we trace over bulk modes, fixing the shape of the tear
system without fluctuations, is an analytical function in com-(the “curvy crack” of broken bondsand fixing the shape of
plex T with a branch cut along the lin€e[0,+=).] In a the crack surfacdthe “surface phonons): we then trace
dilute gas approximation the partition function for the mate-over the surface phonons, and finally we trace over the
rial with N cutsZy is given by shapes of the tear, the location of the crack, and superposi-
tions of many cracks.

In all cases the answer will depend upon the microscopic
lattice-scale structure of the material. In field-theory lan-
guage, our theory needs regularization: we must decide ex-
which from Eq.(69) determines the material free energy  actly how to introduce the ultraviolet cutokf. Here we dis-

cuss the lattice regularization, where the cutoff is explicitly
1 1 & 1 12, introduced by the interatomic distance, afyflinction regu-
F=- EInZ: - EInNE—o Zn=— E'”Zo— BZy (77 larization, common in field theory. We find that the precise
- 0 form of the surface tension renormalization and the prefactor
in the imaginary part of the free energy depends on the regu-
larization prescription, but certain important quantities ap-
pear regularization independent.

+2Z4

7/
Ba\?

A
|mZ:|_: * %Zo( WF) exq—ﬂa/c)(

Z,1Z)N
_2(1 0)

NTLoTNT (76)

Following Egs.(75) and(77) we find the imaginary part of
the free energy,

_ 2 28uN2\ Y2 A The partition function of the elastic material, with one cut
ImFS'mp'e(T):tﬁ i1 (77—2) Z, in the saddle point approximatiofr4), will develop a
BITAL x+ A multiplicative factorZ upon inclusion of the quadratic fluc-
-3 a2 tuationsZ,—Z;Z; with
X ex 22"# . (78
7T(x+1)
; : Zi= 2, exp(— BAE). 80
Equation (78) differs from Eq.(72) only because for the f AEE A~ BAE) (80)

calculation of the imaginary part of the free energy9hwe

used two degrees of freedom: the length of the cut and its . . .
elliptical opening, while in the current calculation there is* deviationAE from the saddle point energy is decomposed

only one degree of freedom. One can immediately restorémo three parts, wi_th each part describing fluctuations of one
Eq. (72) by adding thes,; mode of Eq.(62) to the energy of ©°f the above-mentioned three types,
the elastic materidl71) and integrating it out. From Eg@62),

thev,; mode generates an additional multiplicative contribu- a/‘g * 1 , 2T * s
tion Z,_to the partition function for a single cradk, and ~ AE=—z- 24 2%t Tty n§=:1 n(uy+vp) + AEcontinuous
thus from Eq.(77) changes the imaginary part of the free (82)

energy for multiple crack& P, ImF="™PZ, ImFSmPe,

. 112 The first term in Eq.81) accounts for the decrease in the

7 :f %exp[ _ Zm‘ﬁvi :( 1+x ) (79 ~ energy release due to the curving of the saddle point cut of
I J_w A 1+x '

2,u,6'7\2 length /. with the curvature
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o

o)\ | 112 The last thing we have to settle before the calculation of
k(x)= >, cn<7) sinT, xe[0/.]. (82  Z; is the proper integration measure for the surface phonon
n=1 " c " c modes{u,,,v,}. (We argued in the conclusion of Sec. Il that
the integration measure for the modes is Cartesian—
IM;,_,dc,.) Here we show that because the functional
easure in the displacement fielda(x,y),v(x,y)) de-
ined at each point of the materialx,f/) is naturally
Cartesian—-B[u(x,y)/\]D[v (% Yy)/\]—the integration mea-
o sure for the modes{u,,v,} must be of the form
asy i asyny+) ; ; _ Hﬁ:1(1/27r)dundvn/)\2.
U +iv™) nZl (Un*lvg)sim®, el =mm), An arbitrary elastic displacement field for the ma-
(83)  terial with a curvy cut is defined by specifying its bulk
part (Upu(X,Y).vpu(X,y)) [point (x,y) can be any-
where a point at the cut boundary is parametrized by itsvhere except at the cut boundanand the cut part
distancet=/"c(1+cosd)/2 from the cut end;de[—7,0) (Ul (1),uq(t),viit),vault)) [the cut displacements are de-
parametrize the lower boundary displacements ahd fined along the cut and are parametrized by the distance
€[0,7) parametrize the displacements of the upper boundt=/_(1+ cos9)/2, 9e[0,7) from the cut end; ther and
ary points. The symmetric modes of the crack opening about superscripts are correspondingly the displacements at the
its equilibrium opening shape are assumed to relax providingpper and lower boundaries of the tut is helpful to visu-
the minimum increase in the elastic energy for a givenalize the introduction of the cut into the material as splitting
{un,vn}. The latter guarantees that all additional modes within half each of the atoms of the material along the cut bound-
the continuous displacement at the cut boundéing ones ary. Then, the bulk part of the displacement field combines
which give AE ;oninuous—the last term in Eq(81) describing  degrees of freedom of all atoms left untouched by splitting,
the bulk phononk decouple from{c,,u,,v,} and are the and the cut part describes the displacements of the split ones.
same as the ones for the uncracked material. Since the curhe original measure is naturally
vature modegc,} give the equilibrium energy of the curvy
cut, the response of the surface phonons to such a curving B[ Usui(X,Y)/N1D[vpuid X, Y)/ N ID[Ugy(t) T Ucudt) T/N?]
already incorporated, so the quadratic fluctuati can i N2
be calculated independently from the quadratifa;llﬁctuations XDlvet) veu() /A7
{un,vn}. The latter means that there is no coupling betweerrirst we separate the symmetric and asymmetric parts in the

{ca} and{u,,v,} modes in Eq.(81), and the spectrum of crack opening displacement
{u,,v,} modes is the same as that for the straight cut of

The first term in Eq(81) follows from Eq.(27) with I=1.
given by Eq.(67). The second term in E¢81) describes the
asymmetric modes in the fluctuations of the free surface o
the saddle point crack about its equilibrium opening shape

length/ ¢, Eq. (62). UM 1) = 3 (Ug (1) — Ugd D),
Strictly speaking, this decoupling is not trivial: perfect
decoupling depends on the microscofiattice size descrip- 03YME) =3 (1) —v D),
tion of the elastic medium—i.e., the regularization we (84)
choose for the crack surface. To see this consider a regular- UY™M(t) =3 (U(t) +Ugy(t)),
ization where an elastic medium is represented by a two-
dimensional network of springs. The introduction of the cut IYMt) =3 (V) +voult)).

can be viewed as splitting atonfhe split atom regulariza- ) _
tion) or splitting springs(the split spring regularizationin ~ Because the Jacobian of the transformation
the first case the splitting introduces new degrees of freedom, n _ n _
and, after the antisymmetric surface phonons are removed, (Ueud() ™, Ueut(t) ™ v eu D) v en(t) )
one is left with the same number of the bulk degrees of — (UM, p@YMt),uY™t), 0 (1))
freedom as for the system before splitting. Moreover, it is

clear that, in this regularization, the bulk modes are identicals constant,

to those for the material without the cut: no springs were cut

and the atoms are glued back together. This also provides a I Ueu( 1) ", Uou( ) " veul) e ) |1 (85)
microscopic interpretation of the “traction forces at the UML), v3YMt),uY™M(t),vY(t)) | 4’
seam” discussed in Sec. lll: they become internal forces

exerted by each of the half atoms onto its partner. The alteithe integration measure remains Cartesian:
native of splitting springs definitely changes the spectrum of s s 5
the bulk phonons: the bulk modes have fewer degrees dP[Ubuk(X,Y)/AID[vpu(X,Y)/NIDLUPT (v t)/A7]
free.dom in this regu]arization than th_e medium pefore intro- o D[ UM t) v @M t)/4\2].

ducing the cut. In this paper we consider the split atom regu-

larization, which is technically easier to implement. Splitting Now we can combine the bulk and symmetric cut parts of the
springs instead of atoms is a more physical regularizationmeasure by introducing the continuous displacement fields

but one imagines that it will Slmply renormali-iehift) the (uc(xyy),vc(xyy)) everywhere, inc|uding the cut boundary'
surface tension and leave our results otherwise unchange®ihe integration measure becomes

(This shift is exactly what happens for the split atom and
Z-function regularizations we consider here. Duc(X,Y)/NID[ve(X,y)/N]D[udYMt)v3YMt)/4N2].
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According to our decomposition, we specify the asymmetric First we will consider the/-function regularization. In
cut opening, and find the equilibrium displacement fieldsthis regularization prescriptiof21], the infinite product of
that minimize the increase in the elastic energy. In othethe typeD =1I1,_,\, is evaluated by introducing the function

words, (UaMt),v®Mt)) determine (U™"

vMN(UaYM,3YM) The transformations

(uasym, v asyn) '

Ue(X,y) =ul(udYMyaM + T (x,y), @6

0e(6Y) =g (UMM + T (x,y),

then completely decouple the surface phonon modes and the

continuous modes that contribute AE ., ntinuousin Ed- (81).
The Jacobian of the transformation

(uC(X1y)7UC(X1y)7uaSertt) ,Uasyntt))
— (Ue(X,Y),ve(X,Y),udMt),v2YMt))

is unity (the transformation is just a functional shitind so
the measure remains unchanged,

D[U(X,Y)/NID[U (X, y)/N]D[udYMt) v 3YMt)/4N2].

The Fourier transformatiof83) is orthogonal, but the Fou-
rier modes are not normalized:

fowdﬁsinznﬁz g 87)

D(s),
D)= 2 15, (90)
so that
D=exp(—D;(0)). (91

It is assumed that suit®0) is convergent in some region of
the complexs plane, and that it is possible to analytically
continueD ,(s) from that region tas=0. From Eq.(88) we
find

Z1=D1D2Z continuous (92
whereD; andD, are obtained, following Eq91), from the
corresponding functionsD (s) andD.(s):

,Ba/g s/2 = 1 Ba/g s/2
Dl{(s):( 773)\) 21F: 3| RS,
. (93
AmBuN?\® AmBur?\®
o9~ | 3, o= T i)

The latter means that at the final stage of the change of

variables (uYMt),v?YMt))—{u,,v,} there appear the
Jacobianl_,(2/), and so we end up with the integration
measurdl;_,(1/2m)du,dv, /A2,

From Eqs.(80) and(81), with the proper integration mea-
sure over the surface phonon modes, we find

0 too
Zi= H f de,
n=1J -

a/? - += 1 du,dv,
XeXp{_szxnzcﬁ],ﬂl J J,wﬁ N2

27N
XeXp{ -B 1+ (Uﬁ'i”vﬁ) Z continuous
=11 (ﬁ\nz | z 88
_n:1 Ba/§ A 477,8/.1,)\2” continuous ( )
where
Z continuous™ E exp( — BAE continuous - (89

continuous

ZRr(S) in EQgs.(99) is the standard Riemanhfunction, holo-
he compleg plane except at
2 and ¢’ (0)=—(In2m)/2, we

2

morphic everywhere in t
s=1. Noting that (0)=—
find, from Eqs.(91)—(93),

o

From Eqgs.(77) and (88) we find the imaginary part of the
free energy in the-function regularization,

4par’ 2

TA

2BuN?
1+yx

(94)

Zcontinuous

16B3alu2)\5 1/4 // 1/2
{— - simple
ImF (—2_77(14—)() ) ( X ) ImF (95

where InFS™Peis given by Eq.(78).

Second, we consider lattice regularization, which is more
elaborate. We represent a curvy cut Ry-1=/./\ seg-
ments of equal length parametrized by the kink angles
{a;}, i €[1N]. With our conventional parametrization of
the cutt=/(1+cosd)/2,d{ — m,7), the asymmetric modes
of the crack opening displacemerts®Y™t),v3Y™t)} are
linear piecewise approximations for given asymmetric dis-
placements of the “split” kink atoms{u®™, v, i
e[1,N]. More precisely, ift; andt;, ; parametrize the adja-

BecauseA EyninuousCOrresponds to the degrees of freedomcent kinks, we assume

of the uncracked materidith the same energy spectriym
ZontinuousCONtributes to the partition functiod, of the ma-
terial without the crack, which according to E{.7) drops
out from the calculation of the imaginary part of the free
energy. All the products over in these expressions diverge:

we need a prescription for cutting off the modes at short

wavelengthgan ultraviolet cutoff.

asym_  asym
uESME) =ueme L (),

Gt (96

asym_ _ asym
vasyrrtt):v?sym_’_ i+1 i (t—t)

Gt
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for te[t;,tj;1]. From the integration measure arguments
it is clear that the in-
be

for the ¢-function regularization,

tegration measure in this case must

N daIT  du®™Hu2Y™4aN 2. Now we have to write down

the Iattlce regularization of the quadratic deviatidg from

the saddle point energ§8l). From Eqgs.(19) and (21), the
curving of the critical cut’; will reduce the energy release

by AE,,
T2m(1+x)/2
c lelaaj i a/z ajaM{,
(97)
where . in(i.j)
e min(i, j
M= WNv? T N1 ©8

From Eg. (81) the surface phonon contribution thE is
given by

2T <

> n(up+op), (99

AEp:l"’)( n=1

where, from Eq(83),

2 (m
un=;f0 d3uYMt(9))sinn9,
(100

2 (m
UHZZL d3v®YMt(9))sinnd.

In principle, for a given piecewise approximation of the

asymmetric modes, Eq96), determined by{u®Y™,v Y™,

i e[1,N], one could calculate the Fourier amplitudes accord-

ing to Eq.(100), and then plug the result into E¢Q9) to
obtain AE, in terms of {u?>™

obtain

_f duasy”(t(i})) cond
n

(101

__f duasy”tt(ﬂ)) cond
n

Substituting Eq(101) into Eq. (99), we find

AU 9,) duM 9,)
Ep= 77(1+X)f f dd:d9,

a9, a9,
dv®M91) dv®M9,)
v, a9, K(94,95), (102
where
~. coN,coNnY
K(9p,92)= >, ———— . (103

n=1 n

Following [22]

0™ We will use another
approach. Usingu®YM0)=u®Y"/)=0 [with the same
equalities foru®Y"t)], we integrate Eq(100) by parts to
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1 1
2 2(1 cox)’

(104

” coskx
2

we find an analytical expression for the kernel, EIp3),

K(9,,9,)=—3In2—3In|cos}, —cosd,|. (105

Finally, mtroducmgMp from

( uiasyrrujasym I iasymv jasyn) M Ip]

1

:f f d’l?ld’az
0 Jo

dv®M9q) dv®M9,)
do, do,

ih]
duSM ) dudMd,)
dd, dd,

}K(ﬂl,ﬁz), (100

we obtain

8 2 ( u as;yrrLl asym,_

AEy= 77(1-1—)( i=1

asymv ;_asyr’r) M IF] .
(107

To caIcuIateMﬁ we substitute Eq(96) directly into the
right-hand side of Eq(106), and read off the corresponding
coefficient, given by the following three equations:

=fo(i, )+ (i + 1+ 1) —fo(i+1))—fo(i,j+1)
1
Fa(i,))= (cos&I 1—C0S9;)(cosY;_ 1 — COS,;)
X[f2(L ) +f(i=-1,j-1) (108
—f(i=1)—f1(1,i =D,
(cos&—cos&)2 Y=Y %+,
N 7 n|sin > Lsin > |
fa.)= i
0 otherwise,
where 9,=0, ¥\ 1=m, and ¥; parametrizes théth kink

(kinks are equally spaced in reaI space

ie[1N]. (109

[
N+1)’

U= arcco% 1-

From Egs.(97) and (107 we find the quadratic deviation
from the saddle point energy

AE=AE +AE,+ AEcontinuous
N

=a/’cij2:1 aiajMiCj 2 (uasy"l.l"’lsym

(1+ )i,

+ U?sym asyn) Mi p + AE continuous (110
Thus the multiplicative factoZ; to the partition function of
the elastic material with one cut in the lattice regularization
is given by
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N o N +ood uasyn'dv asym
zi=11 f danexp[—,[)’a/clz aiajMiC]] f f —nZ
n=1J-= i,j=1

N

xexp{ B—— (1+X) Z,

- N/2
_ 1/2ppC
= —ﬂa /C) det ““M;: (

whereZ .oninuousiS diven by Eq.(89).

The determinant coming from the curvy ClMﬁCj can be
calculated analytically. In Sec. Il we showed that7si//
are eigenvectors of operat@@3), the continuous analog of
M° One can explicitly check that fone[1,N], vectors

m,={sinmni/(N+1)} are in fact eigenvectors off; with ei-
genvalues

An= R L 112
AN+ 2N+ D) (112
and so
detM? = H Ap=(N+1)~(N+D, (113
To obtain Eq.(113), we take the limix—0 of
2N+1 k’JT
: _92N+1 ;
sin2(N+1)x=2 k]:[O sin| X+ 2(N+1) (114
[22], to obtain
2N+1 k
N N
N+1= 4?H S@ﬂ@ﬁf 4JI$¥ZWH1) (115

With Eg. (115, the calculation in Eq.(113 becomes
straightforward. Recalling thad+1=/./\, we can rewrite
Eqg. (112) making use of Eq(113),

S Ba\\ Y2 g \/d (V2 303,32\ 12
=\ r Ba\ IR
’7T2(1+X) 7l
% 328un? det_lMiF}Zcontinuous (116

Note that the first three factors on the right-hand side of Eq.

(116 (coming from the curvy cut fluctuatiopshave the
asymptotic formN— oo,

Ba)\ 1/2 T /0/2)\ / 1/2
L _ S NC
= ) (,Ba)\) N ) N¢2exp{cy+ c,N}, (117
with ¢g=0, ¢, =In(m/Ba))/2 andc,=1/2.

asynLI asym
J

w2 (1+ )
32BuN?

7683
+ Uiasme J_asyrr) M |p] Zcontinuous
N
det” lM ﬂ Zcontinuous (111)
[
detV§; =NPzexp{po+ p;N}. (1189

We find py=0.09+0.02, p;=0.166+0.002, andp,=0.24
+0.05.[We expect that the surface phonon fluctuations con-
tribute to Z; similar to the curvy cut fluctuation§l17)—
hence the form of the fitting curve for d&ﬁ .] From Egs.
(116—(118),

3282uaN® 12 /e —py+1/2
m(1+x) (XJ
m3(1+ x)exp{ —2py}| /o2

x 328%0an’

which, following, Eq.(77), gives the imaginary part of the
free energy in the lattice regularization

Zf:exﬂpl_po}(

(119

Zcontinuous

_ 32,82,1La)\3 1/2 /e —ppt1/2
lattice__ _ _¢
ImF exp{p1 pcﬁ’(m N
3(1+ y)exp{—2p,}| > .
with ImFS™P€ from Eq. (78).
Lattice regularization
The surface phonons
20.0 T T T T
- actual numbers
ol T fit i
)
Q 100 i
=
5.0 i
0'oo.o 26.0 4o 0 : 36.0 100.0
Number of kmks N

We were unable to obtain an analytical expression for the

surface phonon determinant . For N=2,...,100

FIG. 6. We numerically calculate the logarithm of the surface

kinks we calculate the determinant numerically and fit itSphonon determinant detf , for N=2, ..., 100kinks, and fit the

logarithm with f(N)=py+ p1sN+ p,InN (Fig. 6),

result withf(N)=py+ p1N+ p2InN.



7684 ALEX BUCHEL AND JAMES P. SETHNA 55

Throughout the calculation we ignored the kinetic term in 1
the energy of the elastic material: their behavior is rather a—ar=a+t mnz- (126
trivial, as momenta and positions decouple. Because we in-

tro%uclz? mm/ degrekes of dfreedor?hwn?foutr “Sfﬁlr']ttmg atoms”crrom Egs.(123 and(124) it follows that, in the case of the
model Tor e crack, we discuss the eTiects ot the corresponqz;.q regularization, the inclusion of the kinetic energy of

g}gngiﬁvemcgtmc%rgf:i‘bstifore splitting,” {c/A—1) atoms the elastic material shifts the constangsandn,, thus pre-
serving Eq.(125):

leIn-1 2
ze = T1 dp dp N 8mph?
anetic™ L PLEP 2t o= Mo| "z (127)
/eIN-1 p2 2
xexg —8 > Pi, "Pi, (121) ma
= 2m n2—>n2+an.

to the partition function of the uncracked mater&. [We  1q cajculation of the kinetic terms in thefunction regu-

do not consider the contribution to the partition function larization is more complicated. However, we have no reason
from the bulk atoms—they contribute in a same way¢@s 4 pelieve that it will change fornf125). ’

they do toZ,, and thus drop out from the calculation of the
imaginary part Eq(77).] The configuration space integration
measure for a classical statistical systenuisdp2s#; be- V. ASYMPTOTIC BEHAVIOR OF THE INVERSE
cause we integrated out the displacements with the weight BULK MODULUS
1\ to make them dimensionless, the momentum integrals | our earlier work[9], we discussed how the thermal
have measurdp\/27fi, Eq.(121). The formation of the cut jnstability of elastic materials with respect to fracture under
increases the number of the kinetic degrees of freedom byn infinitesimal stretching load determines the asymptotic
(7¢I —1) (the number of split atomsThe split atoms con-  pehavior of the high-order elastic coefficients. Specifically,
tribute for the inverse bulk moduluk (P) in two dimensiongma-

2/ In1) terial under compression

2
A
ﬁinetic: |1;[1 f f d pixd piy< 27771) 1 1 ( oA

= [ — :C0+ClP+...+CnPn+-~~, (128)
0P
2/¢I—1) p2 +p2 P
Pi., pr
xexpl -8 >, —— (122
=1

K(P) A
m

we found, within linear elasticity and ignoring the quadratic
fluctuations,
to the partition function of the material with the cut. From

Egs.(77), (121), and (122 the kinetic energy of the elastic Cns1 ol Tx 1) 12
material modify the imaginary part of the free energy by a - ——n 64Bpa’ as n—x», (129
factorZ, :
ImEatice_, 7 | attice (123 which indicates that the high-order termsroughly grow as
— K y

(n/2)!, and so the perturbative expansion for the inverse bulk
modulus is an asymptotic one.

In this section we show that, except for the temperature-
)/C/)\—l dependent renormalization of the surface tension

with

(124) a—a,=a+0(1/B), Eq. (129 remains true even if we in-
clude the quadratic fluctuations around the saddle ftlet
critical crack; moreover, we argue that E¢129 is also

One might notice that for both{(function and lattice  unchanged by the nonlinear corrections to the linear elastic
regularizations the effect of the quadratic fluctuations can bénheory near the crack tips.

absorbed into the renormalization of the prefactor of the We review how one can calculate the high-order coeffi-

imaginary part of the free energy calculated in a simplifiedcients of the inverse bulk modulu®]. The free energy

model (without the quadratic fluctuationsEq. (78), and the  F(T) of the elastic material is presumably analytical in the
material surface tension: the multiplicative factor to the Comp|exT p|ane function for small’ except for a branch cut
imaginary part of the free energy has a generic form T €[ 0,+)—the axis of stretchingWe show this explicitly
S y in tr&e qalc;lulation_ wggl]n) Ilinear elasticdthheory \r/1vithout_ rt]he
simple /¢ X simple quadratic fluctuation$9].) It is assumed here that neither
Imp=P HnO(T) exp{ nZT] ImF=Ps - (129 nonlinear effects near the crack tips nor the quadratic fluc-
tuations change the analyticity domain of the free energy for
where the first two terms renormalize the prefactor ofreasonably small (i.e., T<Y). One can then use Cauchy’'s
ImFS™P'e and the other one can be absorbed intd-fff"'®  theorem to express the free energy of the material under
through the effective renormalization of the surface tensioncompressior(—P) (Fig. 7):

Ziinet mA?
Z,= kinetic (

8w pBh?

T =u
Zkinetic
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1 IF(—P
A Im[T] L _ L FCER) (134
K(P) PAl P |,
so that
c n+3)f
n+l:( ) n+3. (135)
Ch  (N+2)f,
A B Note that because the saddle point calculation becomes more
. e and more accurate 85— 0, and because the integrals in Eq.
C P F E D Re[T] (133 are dominated by small asn— oo, using the saddle
point form for the imaginary part of the free energy yields
the correctn—o asymptotic behavior of the high-order co-
efficients f,, in the free energy. Following Eq$78) and
(125 the imaginary part of the free energy including the
Y quadratic fluctuations is given by
2ng nqin,
FIG. 7. The free energy of the elastic matef4lIT) is analytical ZB,u)\Z L2 32ua, A
in the complexT plane except for a branch cilite [0,+ ). This x+1 7.r-|—2()(4r 1)\ WF
allows a Cauchy representation for the free endfgy- P) of the
material under compression. - 323/“%2
X
ex W_TW , (136)
1 F(T)
F(=P)=57 7T-|-|:>dT (130 where a, is given by Eq.(126). Note thatng, ny, n,, and

a, in Eq. (136) are regularization dependent coefficients, by
The contribution to Eq(130) from the arcEFA goes to  our calculations in Sec. IV. From Eq&l33) and (135 we
zero as the latter shrinks to a point. In this limit we have find

BF(T+i0)—F(T—i0 c +1)\¥2 (n+3)I'(n/2+n;+2

F(—p)= ( )—F( ) - 1 m(x g (n+3)I'( 1 ). (137

2 T+P Cn 32Bua; (n+2)I'(n/2+n,+3/2)
+i F(T)dT In the limit n—o, Eqg. (137 is independent oB in Eq.

27 Jgep T+P (133). Using
BImF(T) 1 fﬁ F(T) I'(n/2+n;+2) n\ 2

== . —=dT. 131) —— = = no

J T+P " 271 JecoTHP (139 r(n/2+n1+3/2)_’(2 as = n—x, (139

As was first established for similar problems in field theorywe conclude from Eq(137) that
[23-25, Eq. (131) determines the high-order terms in the

expansion of the free enerdy(—P)=3.f P" c m(x+1)\ 12
P B P)=2aln —2+1—>—n1’2<—64(1X 3 asn—«. (139
(1" (BIMF(T) _ (-1)" [ F(T) " P
fr= f n+i : % —77dT. (132 . . .
T T 2 oT Equation(139) is a very powerful result: it shows that apart

from the temperature dependemégularization dependent
The second integral on the right-hand side of B2 pro-  correction to the surface tensi¢h26), the asymptotic ratio
duces a convergent series; and is hence unimportant to thg the high-order coefficient of the inverse bulk modulus is
asymptotics: the radius of convergence by the ratio test is ofinchanged by the inclusion of the quadratic fluctuatitats
the order the radius of the circBCD (i.e., larger tharP by  |east for the regularizations we have trie@®ne would defi-
construction. The first integral generates the asymptotic di-nitely expect the surface tension to be regularization depen-

vergence of the inverse bulk modulus expansion: dent: the energy to break an atomic bond explicitly depends
N on the ultraviolet(short scalgphysics, which is excluded in

T (-1) fBImF(T)dT as Nso (133 the thermodynamic description of the system. This has

n T T+t ' analogies with calculations in field theory, where physical

quantities calculated in different regularizations give the
Once a perturbative expansion for the free energy is knowrsame answer when expressed in terms of the renormalized
one can calculate the power series expansion for the inverseasses and charges of the particl8% Here only some
bulk modulus using the thermodynamic relation physical quantities appear regularization independent.
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First, let us consider the energy in the nonlinear zone. The
saddle point energy ia/., and diverges as If asT—0,

while the elastic energy in the nonlinear zdag is bounded
by the linear value

rn
En,~f drrod(n/Y~a?Y. (142
0

SinceE,, is fixed asT—0, it renormalizes, in Eq. (125),
and hence does not affect the asymptotics, (£§9).
Second, we consider how the existence of the irfnen-
linean zone changes the energy in the oufimear zone.
The elastic equations around the crack tip allow many solu-
tions [27]; in each, the stresses;; have the form
FIG. 8. In the crack system there are two well-defined zones: thez, r bfb( 6), T <r <. IN polar coordinatesr(#) cen-
outer zone, consisting of exclusively linear elastic material, and thgered at the crack tip, whetie is a half integer, theC, are
inner, crack tip zone where the nonlinear processes take place. SUE’@nstants, and th, are known trigonometric functions. Lin-
separation introduces two length scales: the firgf) (determines ear fracture mechanics predidts- _% to be the most singu-
the size of the nonlinear zone, and the secandy gives the scale lar solution[compare with Eq(140] only because modes

where the elastic fields near the crack tip deviate from the onesith b< — £ would give rise to singular displacements at the
2

Egidrﬁfg %rt]zieti;i\( approximation to comply with the outer 20NCerack tip. Incorporation of the nonlinear zoner,,;, how-

ever, removes this constraint. In other words, the nonlinear
zone introduces new boundary conditions for linear elasticity

The analysis th‘.'"t leads 10 qu39) IS baset_j on _Imear . solutions, allowing them to be more singular. The dominance
elastic theory that is known to predict unphysical singulari- R C 2 S
of b=—3 solution is known as the small scale yielding

ties near the crack tips. Froni0], the stress tensor compo- (SSY) approximation. Analyzing the mode Il antiplane
nentayy, for example, has a square root divergence shear fracture, Hui and Ruina arguig8] that the SSY ap-

S\ proximation becomes more and more accurate as
UnyT(”_C asr—0 (140 €=TI/Teoss— 0. (They expect that th_e same result can be
4r extended for mode | fractupeClearly, in our case&—0 as

. ] T—0; thus the dominant contribution still comes from
as one approaches the crack tip. One might expect that the= — 1 solution. In fact, following[27] we expect
proper nonlinear description of the crack tips changes the
r n
+ 2 Cn o
n={...,—72,-5/2,-3/2} Il

asymptotic behavior of the high-order elastic coefficients. 12
(143

We argue here that linear analysis gives, however, the corUij{Cn}:T[Cllz(Tc

rect asymptotic ration(139): the linear elastic behavior

dominates theonlinearasymptotics within our model. r\"
It is clear that the vital question is how the energy release + Z Cn(7> .

of the saddle pointcritical) crack is changed by nonlinear n={1/2,32,512, ..} o

processesmicrocracking, emission of dislocations, ¢t 14 inelastic stresses at the outer boundary of the nonlinear
the vicinity of the crack tips a§—0. Following[26], inthe o, | are of orderY, thus, from Eq.(143), for n
crack system we distinguish two well-defined zones: the__ 1 n:O(€71/2) (reca{ll that e=r It ~(:I'/Y)2].
outer zone, consisting of exclusively linear elastic material,-l-he;’e more singular terms in turn ggner%({ses corrections to
transmits the applied traction to the inner, crack tip zon

h h i K e 8. Such eCn with n=1 of orderO(€). [One can see this from the fact
where the nonlinear processes take pkddg. 8). Such sepa- that the dominant contribution from the more singular terms

ration introduces two length scales to the problem:and ..\~ s ¢ (/I )~ ¥~ €] The dependence &, in
leosss The first scale determines the size of the nonlinea:Eq (1/4%) on {ﬁg pglarnlangle) is. implied "
process zone near the crack tips. It can be readily estimated 11 ore is a formal analogy between the arguments pre-
from Eq. (140 by requiring the stresses at the boundary Ofsented here for the stress fields in the crossover zone with the

the nonlinear zone to be of the order atomic ongs-Y: guantum mechanical problem of the bound states of the hy-

2 drogen atom. When we treat the hydrogen nucleus as a point
Fo~/ (I E_ (141) charge, for each orbital quantum number, the electron wave
mooey Y function has two solutions near the oridthe position of the

nucleus: one is finite a3 — 0, and the other one is divergent
The second length scale is a crossover length, where  [29,30. In a point charge problem one immediately discards
the elastic fields near a crack tip deviate from the inner zon¢he divergent solution because it cannot be normalized, and
Jr strain asymptotics to depend on the outer-zone boundarthus cannot represent a bound state. However, in a finite-size
conditions(i.e., the length of the crack in our caséor- nucleus model one notices that the electron wave function
mally, r .0ssiS Only a few times smaller than the crack length outside the nucleus is a mixture of the finite and the diver-
[15,27—for the present calculation we assumegent solutions of the point charge problem. The normaliza-
Feross~ 7 o~ Yal T2, Eq. (67). tion is resolved because inside the nucleus the electron wave
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function satisfies a different equation and becomes finiteThe exponential dependence Wf(ry) on the boundary of

The radius of the nucleus serves as a short-distance cutaffie nonlinear zoney~r,, in Eg. (148 means that the nucle-

similar tor in the crack problem. ation of another crackin addition to the saddle point onis
The change in the contribution to the saddle point energexponentially confined to the nonlinear zone, justifying the

from the outer zone as a result of the introduction of thedilute gas approximation.

nonlinear zonegE ., iS given by

Y o2{C,}— g2 {Clinean VI. OTHER GEOMETRIES, STRESSES,
¢ ij n ] n
OBouer~ | drr Y : (144 AND FRACTURE MECHANISMS
r

nl
In this section we discuss generalizations of our model,
The dominant contribution to Eg144) comes from the cross more exactly its simplified version without the quadratic

term betweem= — 3 and —3 corrections in Eq(143), fluctuations. We will do five things. In Sec. VI A we calcu-
late the imaginary part of the free energy for arbitrary uni-
o T form loading, and find high-order nonlinear corrections to
OE outer~ 7'”? (149 Young’s modulus. We discuss the effects of dislocations and

vacancy clustergvoids) in Secs. VIB and VI C. Section
VID deals with three-dimensional fracture through the
nucleation of penny-shaped cracks: we calculate the imagi-
nary part of the free energy and the asymptotic ratio of the
éuccessive coefficients of the inverse bulk modulus. Finally,
in Sec. VI E we consider a nonperturbative effect: the vapor
fpressure of a solid gas of bits fractured from the crack sur-
faces, and show how it affects the saddle point calculation.

the correction renormalizes thg coefficient in the imagi-
nary part of the free energil36) (regularization dependent
in a first place, leaving the asymptotic rati(l 39 intact.

It is no surprise that the nonlinear effects do not chang
the generic form of the imaginary pati36). The detailed
nonlinear description of the crack tips is a specification o
the ultraviolet(short scalg physics, and thus is nothing but
another choice of the regularization. From our experience
with £-function and lattice regularizations, we naturally ex- A Anisotropic uniform stress and high-order corrections
pect that thisnonlinearregularization preserves the form of to Young's modulus
the imaginary par{136). S )

Finally, let us consider the enhanced nucleation of sec- We calculated the essential singularity of the free energy
ondary cracks in the high-strain outer-zone region—a pos&t Z&ro tension only for unifornsotropic loads at infinity.
sible cause for breakdown of the “dilute gas” approxima- Wlthln the apprOX|_mat|0n of ignoring the qgadratlc fIL_Jctua-
tion. Inside the nonlinear zone of the saddle point crack, th&ons, we can easily generalize to any uniform loading. In
critical crack length for a second crack is of the ordé general, consu_jer an |_nf|n|t(_a elastic material subject to a uni-
[from Eq.(67) with T~ Y], and thus such microcracks can be form asymptotic tension witlry, =T, o,,=€T (0<e<1),
easily created. In fact, the nucleation of these microcrack&"d oxy="0. Using the strain-stress analysis[af] and fol-
may well be the dominant mechanism of the main crackOWing Egs.(2) and(3), we find the energ¥ cicaso released
propagation. Microcrack nucleation in the nonlinear zongfom the creation of the straight cut of length tilted by
will change the stress fields near the crack tips, but, as wangleé from thex axis,
discuss above, has little impact on the saddle point energy T2 (14 y)

(as the total energy in the nonlinear zone is finitwe show Erelease ————————[(1+€)+(1—e€)cos2h]. (149
now that such secondary crack nucleation is exponentially 64u

confined to the nonlinear zone of the main crack. The prob-

ability W(ry) of the second crack nucleated somewhere a

t>ro~ry (F=0 corresponds to a crack Jifs given by tI'he isotropic result19) is restored fore=1. The important

feature that comes into play is that the crack rotation ceases
. to be a zero-restoring-force mode. Treating the crack rotation
E;exp{—ﬁa/(r)}, (146 o quadratic order i¥ from the saddle point valugé=0, we
A obtain the total energy of the craé8{A/, 8), similar to Egs.
(66)—(68) and(71),

+

W(r0)~f

o

where/(r) is a critical crack length at distaneefrom the
tip of the critical crack. From Eq67), with T replaced with

the stress field near the crack tip given by Egt0), we find E(A/.0)=a/ — aA/'2+a/ (1-o (150
/, em Tl .
/(1) aY (147)
/(r)~——5~T.
O'ij(r)

As before,A/ is the deviation of the crack length from the
saddle point value/., still given by Eg.(67). Following
Egs. (73)—(77), the imaginary part of the free energy for a
rordr 1+ Bar djlute gas of fstraiﬁht cu_]Es, excluding _aII quadrat.iccmflléctua—
. - _ _ 0 _ tions except for the uniform contraction-expansignode
W(ro) fo N2 X~ Bar} (Ba\)? exXp ~Bar ol A/) and the rotation(mode 6) of the critical droplet, is
(148  given by

Equation(146) with Eq. (147) gives
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ol T A From Eg. (1595 the radius of the critical vacancy is
|mFS'mpe(T.6)=im 3z R.=a/T, and its energy is given bf,,{R.)=ma?/T. A
saddle point is a circular void because a circular void gains
1\ —32Bua’ the most energy+{ area of the voigifor a given perimeter
1) P T |- (15D |ength. In principle, the exact shape of the critical cluster is

also affected by the elastic energy release. However,
One immediately notices an intriguing fact: tleedepen-
dence of the imaginary part is only in the prefactor, which, as
we already know is regularization dependent. In particular,
the latter means that the inverse Young’'s modulus—the elas-
tic coefficient corresponding to the transition with path
e=0—will have the same asymptotic behavior as that of the
inverse bulk modulugl39): the asymptotic ratio of the high- is fixed asT—0, and thus the energy of the vacancy is domi-
order elastic coefficients of the inverse Young’s modulushated byE,,{R.) for smallT. [To obtain Eq(156) we used
Y(P) the strain-stress analysis [f0] and expressiorn3) for the
energy releasg.Using the framework developed for the
crack nucleation, we find that, in the case of voidgain,
ignoring the positive frequency quadratic fluctuatipmise
imaginary part of the free energy is given by

7T?R%(3x+1) _ ma®(3y+1)
8u - 8u

EreleaséRc) = (156)

YP) A

1 1/0A
P

—) =Yo+YP+ - +Y P+ (152
B

[P in Eqg. (152 is a uniaxial compressidrs given by

Yn+l 1/2 W(X_F 1)
. A Sl
Y, 64Bua’

1/2 ) 1 A 1 1/2 —77,3012
| anem s ez G ] ool =T

(157

B. Dislocations

We have forbidden dislocation nucleation and plastic flowThe special feature of calculatigi57) is that translations
in our model. Dislocation emission is crucial for ductile frac- are the only zero modes: the rotation of a circular vacancy
ture, but by restricting ourselves to a brittle fracture ofcluster does not represent a new state of the system. From
defect-free materials we have escaped many complication&q. (157) we obtain, following Eqs(132 and (135), the
Dislocations are in principle important: the nucleati@i]  asymptotic ratio of the high-order coefficients of the inverse
barrier Eg;s for two edge dislocations in an isotropic linear- bulk modulus,
elastic material under a uniform tensidhwith equal and

. , > c n
opposite Burger’s vectors is nti__ 5.
(o gere’

(158

Edis:mln? +Eo, (154 The divergence of the inverse bulk modulus is much stronger
in this case: the high-order coefficients grow gs-n!,

whereE, is a T-independent part that includes the disloca-rather than asn(/2)! (for the fracture through the crack
tion core energy. The fact thaEg grows like 1/IiT as  Nhucleation. _ . . _
T—0 (much more slowly than the corresponding barrier for  Whether(158) is a realistic result is an open question.
crackg tells us that in more realistic models dislocations andFracture through vacancy cluster nucleation is an unlikely
the resulting plastic flo32] cannot be ignored. While dis- mechanism for highly brittle materials: the identification of
locations may not themselves lead to a catastrophic instabilt With (—T) demands a mechanism for relieving elastic
ity in the theory(and thus to an imaginary part in the free t€nsion by the creation of vacancies. The only bulk mecha-

nucleation(e.g., crack nucleation on grain boundaries and?€ excluded from consideration — the dislocations in highly
dislocation tangles[15,26. brittle materials are immobilg26]. Vacancy clusters might

be important for the fracture of ductil@onbrittle materials.
However, the nucleation of vacancies must be considered
parallel with the nucleation of dislocations. Because at small
We ignore void formation. It would seem natural to asso-T dislocations are nucleated much more eaﬁﬂm_ (154)]
ciate the negative pressuftension (—T) times the unit cell  than vacancy clusters at low stresses, the dominant bulk
size with the chemical potential of a vacancy. At negative mode of failure is much more likely to be crack nucleation at

chemical potentials, the dominant fracture mechanism bea dislocation tangle or grain boundary—as indeed is ob-
comes the nucleation of vacancy clusters or vdiggher served in practice.

than Griffith-type microcracks as noted by Goluboviand
Perederd33]. If we identify the chemical potential of a va-

cancy with—T, we find the total energy of creation a circu- )
lar vacancy of radiu®, E,.{R), to be Our theory can be extended to describe a three-

dimensional fracture transition as well. Studying elliptical
Evad R)=27Ra—T#7R2. (155  cuts, Sih and Liebowitz13] found that a penny-shaped cut

C. Vacancy clusters

D. Three-dimensional fracture
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in a three-dimensional elastic medium subject to a uniform * a/v\V 1
isotropic tensionT relieves the most elastic energy for a Zgad/v1)= > exﬂ—ZﬁahN)(W) NI
given area of the cut. The energy to create a penny-shaped n=0 '
cut of radiusR, EpennfR), is given by[13] /vy
41— o) ROT? exp{ N2 exp Zﬁa)\)}. (163
Epennf R) = 2maR*~ VR (159

From Eqs(162 and(163), it follows that the partition func-
tion of the gas effectively increases the tensibrby the

The zero modes contribute in this case a facteV2\® —
vapor pressur® qno, T— T+ Pyapo, Where

27 coming from the distinct rotations of the cut, awd\®
coming from the translations of the cut. Here we find the
imaginary part of the free energy to be 1
P\,apm:?exp( - 2,86!)\). (164)
_ 1 v 1\ p
IMFSePST) = i—( 277—3) (—2)
2p NI\ 2Bak In particular, the essential singularity of the free energy shifts
—2Bulm3a? from zero tension to minus the “vapor” pressure. This shift
><exp{ —24}, (160 is clearly a nonperturbative effect. We were able to describe
3(1=o)°T it only by allowing topologically different excitations in the
system: a state of the elastic material with a bit completely
and the asymptotic ratio of the high-order elastic coefficientsjetached from the crack surfaney notbe obtained by the

of the inverse bulk modulus continuous deformation of the crack surfadsurface
phonon$ or the cut shapécurvy cutg. At zero external pres-
Crs1 3(1—0)? \ Y4 n\ V4 sure, our material is in the gdfractured phase—not until

c. _)_(2,[3#277%2 (Z) (16D Pp0ris the solid stable.

E. Vapor pressure VIl. SUMMARY

The approach we used to calculate the imaginary part of In this paper we studied the stress-induced phase transi-
the free energy is a perturbative one. In a sense, nothingon of elastic materials under external stress: an elastic
prohibits us from considering cubic, quartic, etc. deviations Phase” under positive pressure goes to a fractured
from the saddle point energy. In fact, it is possible to develop'Phase” under tension. Under a stretching load the free en-
an ana|og of Feynman diagram techniqm in guantum ergy develops an imaginary part with an essential singularity
electrodynamic$29] or quantum field theorj8]) and calcu- ~ at vanishing tension. To calculate the essential singularity of
late the contribution to the imaginary part to any finite order.the free energy including quadratic fluctuations, we deter-
It is important to realize that, even if we do this, the resultmined the spectrum and normal modes of surface fluctua-
would still be incomplete: we would miss interesting andtions of a straight cut, and proved that under uniform isotro-
important physics coming from nonperturbative effects. HerePiC tension a curvy cut releases the same elastic engogy
we discuss one such nonperturbative effect, namely, the “vacubic ordey as a straight one with the same end points. The
por” pressure of a solid gas of bits fractured from the crackimaginary part of the free energy determines the asymptotic

surface. We find that including the vapor pressure, the esseRehavior of the high-qrder nonlinear correction to the inverse
tial singularity shifts fromT=0 to T=— Py, Consider a bulk mod_ulu§[9]. We find that althoggh the prefactor an_d th.e
dilute gas of straight cuts of arbitrary length with an elliptical 'enormalization of the surface tension are both regularization
opening[modev; in Eq. (59)] and a solid gas of fractured dependentonce we include the quadratic fluctuationthe

bits from the crack surface. Followir], the partition func- ~ @symptotic ratio of the high-order successive coefficients of

tion of the material with one cu#; under a uniform isotropic the inverse bulk modulus apparently is a regularization-

tensionT is independent result. _ o
Within our model, the asymptotic ratio is unchanged by
A\ (=d/ (=dv, the inclusion of nonlinear effects near the crack tips. We
21=2o ™o x Jo N generalized the simplified modekithout the quadratic fluc-

tuationg to anisotropic uniform strain, and calculated the
27w, @I/ asymptotic behavior of the high-order nonlinear coefficients
X ex —,3<2a/+ X+1U1_ Tvl) Zgad /' 01), of the inverse Young’s modulus. We computed the imagi-

nary part of the free energgand the corresponding diver-
(162 gence of the high-order coefficients of the inverse bulk

modulug for fracture via void nucleatiofwhich dominates

whereZy.{/,v,) is the partition function of the gas of frac- at small external pressugesve argue that it may not occur
tured bits inside the crack of area/v,/2. It costs v\ to  in brittle fracture and should be preempted by dislocation
fracture one bit of size. X\ from a crack step, so, in an motion in ductile fracture. We find that the simplified model

ideal gas approximation, the partition function of the gas isapplied to three-dimensional fracture predict&]! diver-

determined by gence of the nonlinear coefficients of the inverse bulk
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modulus. vergence would be bounded by the difference between the
Our results can be viewed as a straightforward extensiopoint of expansion and the vapor pressure.

to the solid-gas sublimation point of Landdr9,4] and Fish-

er's [3] theory of the essential singularities at the liquid-gas
transition. Indeed, if we allow for vapor pressure in our
model, then our system will be in the gas phas@at0, as We acknowledge the support of U.S. DOE Grant No. DE-
noted in Sec. VIE. The essential singularity we calculateFG02-88-ER45364. We would like to thank Yakov Kanter,
shifts from P=0 to the vapor pressure. If we measure theEugene Kolomeisky, Paul Houle, Tony Ingraffea, Paul
nonlinear bulk modulus as an expansion ab@ay) atmo-  Wawrzynek, Lisa Wickham, Karin Dahmen, Herbert Hui,
spheric pressure, it should converge, but the radius of corkKen Burton, and Robb Thompson for useful conversations.
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